Skip to main content

On the Approximation of Geometric Fractional Brownian Motion

  • Chapter
  • First Online:
Optimality and Risk - Modern Trends in Mathematical Finance

Abstract

We give an approximation to geometric fractional Brownian motion. The approximation is a simple corollary to a ‘teletraffic’ functional central limit theorem by Gaigalas and Kaj in (Bernoulli 9:671–703, 2003). We analyze the central limit theorem of Gaigalas and Kaj from the point of view of semimartingale limit theorems to have a better understanding of the arbitrage in the limit model. With this approximation we associate the corresponding pricing model sequence, which has the no-arbitrage property and which is complete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, C., Sottinen, T., Valkeila, E.: Pricing by hedging beyond semimartingales. Finance Stoch. 12, 441–468 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  2. Björk, T., Hult, H.: A note on Wick products and the fractional Black-Scholes model. Finance Stoch. 9, 197–209 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cheridito, P.: Arbitrage in fractional Brownian motion models. Finance Stoch. 7, 533–553 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dzhaparidze, K.O.: Introduction to Option Pricing in a Securities Market. CWI SYLLABUS, Amsterdam (2000)

    MATH  Google Scholar 

  5. Elliott, R., van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Financ. 13, 301–330 (2003)

    Article  MATH  Google Scholar 

  6. Gaigalas, R., Kaj, I.: Convergence of scaled renewal processes and a packet arrival model. Bernoulli 9, 671–703 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Guasoni, P.: No arbitrage under transaction costs, with fractional Brownian motion and beyond. Math. Financ. 16, 569–582 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Guasoni, P., Rsonyi, M., Schachermayer, W.: Consistent price systems and face-lifting pricing under transaction costs. Ann. Appl. Probab. 18, 491–520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hu, Y., Øksendal, B.: Fractional white noise calculus and applications to finance. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6, 1–32 (2003)

    Article  MATH  Google Scholar 

  10. Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd. edn. Springer, New York (2003)

    MATH  Google Scholar 

  11. Jarrow, R.A., Protter, P., Sayit, H.: No arbitrage without semimartingales. Ann. Appl. Probab. 19(2), 596–616 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kabanov, Yu.M., Kramkov, D.O.: Asymptotic arbitrage in large financial markets. Finance Stoch. 2, 143–172 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Klüppelberg, C., Kühn, C.: Fractional Brownian motion as a weak limit of Poisson shot noise processes—with applications to finance. Stoch. Process. Appl. 113, 333–251 (2004)

    Article  MATH  Google Scholar 

  14. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes. II Applications. Springer, New York (2001)

    Google Scholar 

  15. Mishura, Y., Valkeila, E.: An extension of the Lévy characterization to fractional Brownian motion. HUT, Institute of Mathematics, Preprint A514, 24 pages (2006)

    Google Scholar 

  16. Nikunen, M., Valkeila, E.: A Prohorov bound for a Poisson process and an arbitrary counting process with some applications. Stoch. Stoch. Rep. 37, 133–151 (1991)

    MATH  MathSciNet  Google Scholar 

  17. Schoenmakers, J., Kloeden, P.: Robust option replication for a Black-Scholes model extended with nondeterministic trends. J. Appl. Math. Stoch. Anal. 12, 113–120 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shiryaev, A.N.: Essentials of Stochastic Finance. Facts, Models, Theory. World Scientific, New Jersey (1999)

    Book  Google Scholar 

  19. Sottinen, T.: Fractional Brownian motion, random walks and binary market models. Finance Stoch. 5, 343–355 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sottinen, T., Valkeila, E.: On arbitrage and replication in the fractional Black-Scholes pricing model. Stat. Decis. 21, 93–107 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esko Valkeila .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valkeila, E. (2009). On the Approximation of Geometric Fractional Brownian Motion. In: Optimality and Risk - Modern Trends in Mathematical Finance. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02608-9_14

Download citation

Publish with us

Policies and ethics