Skip to main content

MEMS/NEMS Devices and Applications

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Microelectromechanical systems (MEMS) have played key roles in many important areas, for example transportation, communication, automated manufacturing, environmental monitoring, health care, defense systems, and a wide range of consumer products. MEMS are inherently small, thus offering attractive characteristics such as reduced size, weight, and power dissipation and improved speed and precision compared to their macroscopic counterparts. Integrated circuit (IC) fabrication technology has been the primary enabling technology for MEMS besides a few special etching, bonding and assembly techniques. Microfabrication provides a powerful tool for batch processing and miniaturizing electromechanical devices and systems to a dimensional scale that is not accessible by conventional machining techniques. As IC fabrication technology continues to scale toward deep submicrometer and nanometer feature sizes, a variety of nanoelectromechanical systems (NEMS) can be envisioned in the foreseeable future. Nanoscale mechanical devices and systems integrated with nanoelectronics will open a vast number of new exploratory research areas in science and engineering. NEMS will most likely serve as an enabling technology, merging engineering with the life sciences in ways that are not currently feasible with microscale tools and technologies.

MEMS has been applied to a wide range of fields. Hundreds of microdevices have been developed for specific applications. It is thus difficult to provide an overview covering every aspect of the topic. In this chapter, key aspects of MEMS technology and applications are illustrated by selecting a few demonstrative device examples, such as pressure sensors, inertial sensors, optical and wireless communication devices. Microstructure examples with dimensions on the order of submicrometer are presented with fabrication technologies for future NEMS applications.

Although MEMS has experienced significant growth over the past decade, many challenges still remain. In broad terms, these challenges can be grouped into three general categories: (1) fabrication challenges; (2) packaging challenges; and (3) application challenges. Challenges in these areas will, in large measure, determine the commercial success of a particular MEMS device in both technical and economic terms. This chapter presents a brief discussion of some of these challenges as well as possible approaches to addressing them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

alternating-current

AC:

amorphous carbon

AFM:

atomic force microscope

AFM:

atomic force microscopy

CMOS:

complementary metal–oxide–semiconductor

CNT:

carbon nanotube

DC:

direct-current

DMD:

deformable mirror display

DMD:

digital mirror device

HF:

hydrofluoric

IC:

integrated circuit

MEMS:

microelectromechanical system

MWCNT:

multiwall carbon nanotube

NEMS:

nanoelectromechanical system

PMMA:

poly(methyl methacrylate)

RF:

radiofrequency

RIE:

reactive-ion etching

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

SOI:

silicon-on-insulator

SRAM:

static random access memory

VCO:

voltage-controlled oscillator

References

  1. M. Mehregany, S.F. Bart, L.S. Tavrow, J.H. Lang, S.D. Senturia: Principles in design and microfabrication of variable-capacitance side-drive motors, J. Vac. Sci. Technol. A 8, 3614–3624 (1990)

    Article  Google Scholar 

  2. Y.-C. Tai, R.S. Muller: IC-processed electrostatic synchronous micromotors, Sens. Actuators 20, 49–55 (1989)

    Article  Google Scholar 

  3. J.J. Sniegowski, S.L. Miller, G.F. LaVigne, M.S. Roders, P.J. McWhorter: Monolithic geared-mechanisms driven by a polysilicon surface-micromachined on-chip electrostatic microengine, IEEE Solid-State Sens. Actuators Workshop (1996) pp. 178–182

    Google Scholar 

  4. G.T.A. Kovacs: Micromachined Transducer Sourcebook (McGraw-Hill, Boston 1998)

    Google Scholar 

  5. S.D. Senturia: Microsystem Design (Kluwer, Dordrecht 1998)

    Google Scholar 

  6. J.E. Gragg, W.E. McCulley, W.B. Newton, C.E. Derrington: Compensation and calibration of a monolithic four terminal silicon pressure transducer, IEEE Solid-State Sens. Actuators Workshop (1984) pp. 21–27

    Google Scholar 

  7. Y. Wang, M. Esashi: A novel electrostatic servo capacitive vacuum sensor, IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1457–1460

    Google Scholar 

  8. W.H. Ko, Q. Wang: Touch mode capacitive pressure densors, Sens. Actuators 75, 242–251 (1999)

    Article  Google Scholar 

  9. D.J. Young, J. Du, C.A. Zorman, W.H. Ko: High-temperature single-crystal 3C-SiC capacitive pressure sensor, IEEE Sens. J. 4, 464–470 (2004)

    Article  Google Scholar 

  10. H. Kapels, R. Aigner, C. Kolle: Monolithic surface-micromachined sensor system for high pressure applications, Int. Conf. Solid-State Sens. Actuators (2001) pp. 56–59

    Google Scholar 

  11. J.M. Bustillo, R.T. Howe, R.S. Muller: Surface micromachining for microelectromechanical systems, Proc. IEEE 86(8), 1552–1574 (1998)

    Article  Google Scholar 

  12. J.H. Smith, S. Montague, J.J. Sniegowski, J.R. Murray, P.J. McWhorter: Embedded micromechanical devices for the monolithic integration of MEMS with CMOS, IEEE Int. Electron Dev. Meet. (1993) pp. 609–612

    Google Scholar 

  13. T.A. Core, W.K. Tsang, S.J. Sherman: Fabrication technology for an integrated surface-micromachined sensor, Solid State Technol. 36(10), 39–40, 42, 46–47 (1993)

    Google Scholar 

  14. C. Lu, M. Lemkin, B.E. Boser: A monolithic surface micromachined accelerometer with digital output, IEEE Int. Solid-State Circuits Conf. (1995) pp. 160–161

    Google Scholar 

  15. N. Yazdi, K. Najafi: An all-silicon single-wafer fabrication technology for precision microaccelerometers, IEEE Int. Conf. Solid-State Sens. Actuators (1997) pp. 1181–1184

    Google Scholar 

  16. T.B. Gabrielson: Mechanical-thermal noise in micromachined acoustic and vibration sensors, IEEE Trans. Electron Dev. 40(5), 903–909 (1993)

    Article  Google Scholar 

  17. J. Chae, H. Kulah, K. Najafi: A monolithic three-axis micro-g micromachined silicon capacitive accelerometer, IEEE J. Solid-State Circuits 14, 235–242 (2005)

    Google Scholar 

  18. M. Lemkin, M.A. Ortiz, N. Wongkomet, B.E. Boser, J.H. Smith: A 3-axis surface micromachined ∑Δ accelerometer, IEEE Int. Solid-State Circuits Conf. (1997) pp. 202–203

    Google Scholar 

  19. J. Wu, G.K. Fedder, L.R. Carley: A low-noise low-offset capacitive sensing amplifier for a 50 μ g/√Hz monolithic CMOS MEMS accelerometer, IEEE J. Solid-State Circuits 39, 722–730 (2004)

    Article  Google Scholar 

  20. W.A. Clark, R.T. Howe: Surface micromachined Z-axis vibratory rate gyroscope, IEEE Solid-State Sens. Actuators Workshop (1996) pp. 283–287

    Google Scholar 

  21. J.A. Geen, S.J. Sherman, J.F. Chang, S.R. Lewis: Single-chip surface micromachined integrated gyroscope with 50°/h Allan deviation, IEEE J. Solid-State Circuits 37, 1860–1866 (2002)

    Article  Google Scholar 

  22. H. Xie, G.K. Fedder: Fabrication, characterization, and analysis of a DRIE CMOS-MEMS gyroscope, IEEE Sens. J. 3, 622–631 (2003)

    Article  Google Scholar 

  23. T. Juneau, A.P. Pisano: Micromachined dual input axis angular rate sensor, IEEE Solid-State Sens. Actuators Workshop (1996) pp. 299–302

    Google Scholar 

  24. L.J. Hornbeck: Current status of the digital micromirror device (DMD) for projection television applications, IEEE Int. Electron Dev. Meet. (1993) pp. 381–384

    Google Scholar 

  25. R.S. Muller, K.Y. Lau: Surface-micromachined microoptical elements and systems, Proc. IEEE 86(8), 1705–1720 (1998)

    Article  Google Scholar 

  26. P.F. Van Kessel, L.J. Hornbeck, R.E. Meier, M.R. Douglass: A MEMS-based projection display, Proc. IEEE 86(8), 1687–1704 (1998)

    Article  Google Scholar 

  27. M.S. Cohen, M.F. Cina, E. Bassous, M.M. Opyrsko, J.L. Speidell, F.J. Canora, M.J. DeFranza: Packaging of high density fiber/laser modules using passive alignment techniques, IEEE Trans. Compon. Hybrids Manuf. Technol. 15, 944–954 (1992)

    Article  Google Scholar 

  28. M.J. Wale, C. Edge: Self-aligned flip-chip assembly of photonic devices with electrical and optical connections, IEEE Trans. Compon. Hybrids Manuf. Technol. 13, 780–786 (1990)

    Article  Google Scholar 

  29. M.J. Daneman, N.C. Tien, O. Solgaard, K.Y. Lau, R.S. Muller: Linear vibromotor-actuated micromachined microreflector for integrated optical systems, IEEE Solid-State Sens. Actuators Workshop (1996) pp. 109–112

    Google Scholar 

  30. K.S.J. Pister, M.W. Judy, S.R. Burgett, R.S. Fearing: Microfabricated hinges, Sens. Actuators 33(3), 249–256 (1992)

    Article  Google Scholar 

  31. O. Solgaard, M. Daneman, N.C. Tien, A. Friedberger, R.S. Muller, K.Y. Lau: Optoelectronic packaging using silicon surface-micromachined alignment mirrors, IEEE Photon. Technol. Lett. 7(1), 41–43 (1995)

    Article  Google Scholar 

  32. S.S. Lee, L.S. Huang, C.J. Kim, M.C. Wu: 2 × 2 MEMS fiber optic switches with silicon sub-mount for low-cost packaging, IEEE Solid-State Sens. Actuators Workshop (1998) pp. 281–284

    Google Scholar 

  33. T. Akiyama, H. Fujita: A quantitative analysis of scratch drive actuator using Buckling motion, Tech. Dig., 8th IEEE Int. MEMS Workshop (1995) pp. 310–315

    Google Scholar 

  34. V.A. Aksyuk, F. Pardo, D.J. Bishop: Stress-induced curvature engineering in surface-micromachined devices, Proc. SPIE 3680, 984 (1999)

    Article  Google Scholar 

  35. D.J. Young, B.E. Boser: A micromachined variable capacitor for monolithic low-noise VCOs, IEEE Solid-State Sens. Actuators Workshop (1996) pp. 86–89

    Google Scholar 

  36. A. Dec, K. Suyama: Micromachined electro-mechanically tunable capacitors and their applications to RF ICʼs, IEEE Trans. Microw. Theory Tech. 46, 2587–2596 (1998)

    Article  Google Scholar 

  37. Z. Li, N.C. Tien: A high tuning-ratio silicon-micromachined variable capacitor with low driving voltage, IEEE Solid-State Sens. Actuators Workshop (2002) pp. 239–242

    Google Scholar 

  38. Z. Xiao, W. Peng, R.F. Wolffenbuttel, K.R. Farmer: Micromachined variable capacitor with wide tuning range, IEEE Solid-State Sens. Actuators Workshop (2002) pp. 346–349

    Google Scholar 

  39. J.J. Yao, S.T. Park, J. DeNatale: High tuning-ratio MEMS-based tunable capacitors for RF communications applications, IEEE Solid-State Sens. Actuators Workshop (1998) pp. 124–127

    Google Scholar 

  40. J.B. Yoon, C.T.-C. Nguyen: A high-Q tunable micromechanical capacitor with movable dielectric for RF applications, IEEE Int. Electron Dev. Meet. (2000) pp. 489–492

    Google Scholar 

  41. D.J. Young, V. Malba, J.J. Ou, A.F. Bernhardt, B.E. Boser: Monolithic high-performance three-dimensional coil inductors for wireless communication applications, IEEE Int. Electron Dev. Meet. (1997) pp. 67–70

    Google Scholar 

  42. D.J. Young, B.E. Boser, V. Malba, A.F. Bernhardt: A micromachined RF low phase noise voltage-controlled oscillator for wireless communication, Int. J. RF Microw. Comput.-Aided Eng. 11(5), 285–300 (2001)

    Article  Google Scholar 

  43. C.L. Chua, D.K. Fork, K.V. Schuylenbergh, J.P. Lu: Self-assembled out-of-plane high Q inductors, IEEE Solid-State Sens. Actuators Workshop (2002) pp. 372–373

    Google Scholar 

  44. J.B. Yoon, C.H. Han, E. Yoon, K. Lee, C.K. Kim: Monolithic high-Q overhang inductors fabricated on silicon and glass substrates, IEEE Int. Electron Dev. Meet. (1999) pp. 753–756

    Google Scholar 

  45. J.B. Yoon, Y. Choi, B. Kim, Y. Eo, E. Yoon: CMOS-compatible surface-micromachined suspended-spiral inductors for multi-GHz silicon RF ICs, IEEE Electron Dev. Lett. 23, 591–593 (2002)

    Article  Google Scholar 

  46. C.L. Goldsmith, Z. Yao, S. Eshelman, D. Denniston: Performance of low-loss RF MEMS capacitive switches, IEEE Microw. Guided Wave Lett. 8(8), 269–271 (1998)

    Article  Google Scholar 

  47. J.J. Yao, M.F. Chang: A surface micromachined miniature switch for telecommunication applications with signal frequencies from DC up to 40 GHz, 8th Int. Conf. Solid-State Sens. Actuators (1995) pp. 384–387

    Google Scholar 

  48. P.M. Zavracky, N.E. McGruer, R.H. Morriosn, D. Potter: Microswitches and microrelays with a view toward microwave applications, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 338–347 (1999)

    Article  Google Scholar 

  49. D. Hyman, J. Lam, B. Warneke, A. Schmitz, T.Y. Hsu, J. Brown, J. Schaffner, A. Walston, R.Y. Loo, M. Mehregany, J. Lee: Surface-micromachined RF MEMs switches on GaAs substrates, Int. J. RF Microw. Comput.-Aided Eng. 9(4), 348–361 (1999)

    Article  Google Scholar 

  50. J. Wang, Z. Ren, C.T.C. Nguyen: 1.156-GHz self-aligned vibrating micromechanical disk resonator, IEEE Trans. Ultrason. Ferr. Freq. Control 51, 1607–1628 (2004)

    Article  Google Scholar 

  51. Y. Wang, Z. Li, D.T. McCormick, N.C. Tien: A low-voltage lateral MEMS switch with high RF performance, J. Microelectromech. Syst. 13, 902–911 (2004)

    Article  Google Scholar 

  52. C.T.C. Nguyen, R.T. Howe: CMOS microelectromechanical resonator oscillator, IEEE Int. Electron Dev. Meet. (1993) pp. 199–202

    Google Scholar 

  53. L. Lin, R.T. Howe, A.P. Pisano: Microelectromechanical filters for signal processing, IEEE J. Microelectromech. Syst. 7(3), 286–294 (1998)

    Article  Google Scholar 

  54. F.D. Bannon III, J.R. Clark, C.T.C. Nguyen: High frequency micromechanical filter, IEEE J. Solid-State Circuits 35(4), 512–526 (2000)

    Article  Google Scholar 

  55. K. Wang, Y. Yu, A.C. Wong, C.T.C. Nguyen: VHF free-free beam high-Q micromechanical resonators, 12th IEEE Int. Conf. Micro Electro Mech. Syst. (1999) pp. 453–458

    Google Scholar 

  56. J.R. Clark, W.T. Hsu, C.T.C. Nguyen: High-Q VHF micromechanical contour-mode disk resonators, IEEE Int. Electron Dev. Meet. (2000) pp. 493–496

    Google Scholar 

  57. C.T.C. Nguyen, R.T. Howe: Quality factor control for micromechanical resonator, IEEE Int. Electron Dev. Meet. (1992) pp. 505–508

    Google Scholar 

  58. M.L. Roukes: Plenty of room, indeed, Sci. Am. 285, 48–57 (2001)

    Article  Google Scholar 

  59. A.N. Cleland, M.L. Roukes: Fabrication of high frequency nanometer scale mechanical resonators from bulk Si crystals, Appl. Phys. Lett. 69, 2653–2655 (1996)

    Article  Google Scholar 

  60. D.W. Carr, H.G. Craighead: Fabrication of nanoelectromechanical systems in single crystal silicon using silicon on insulator substrates and electron beam lithography, J. Vac. Sci. Technol. B 15, 2760–2763 (1997)

    Article  Google Scholar 

  61. T.S. Tighe, J.M. Worlock, M.L. Roukes: Direct thermal conductance measurements on suspended monocrystalline nanostructures, Appl. Phys. Lett. 70, 2687–2689 (1997)

    Article  Google Scholar 

  62. H.X. Tang, X.M.H. Huang, M.L. Roukes, M. Bichler, W. Wegsheider: Two-dimensional electron-gas actuation and transduction for GaAs nanoelectromechanical systems, Appl. Phys. Lett. 81, 3879–3881 (2002)

    Article  Google Scholar 

  63. Y.T. Yang, K.L. Ekinci, X.M.H. Huang, L.M. Schiavone, M.L. Roukes, C.A. Zorman, M. Mehregany: Monocrystalline silicon carbide nanoelectromechanical systems, Appl. Phys. Lett. 78, 162–164 (2001)

    Article  Google Scholar 

  64. X.M.H. Huang, X.L. Feng, M.K. Prakash, S. Kumar, C.A. Zorman, M. Mehregany, M.L. Roukes: Fabrication of suspended nanomechanical structures from bulk 6H-SiC substrates, Mater. Sci. Forum 457–460, 1531–1534 (2004)

    Article  Google Scholar 

  65. L. Sekaric, M. Zalalutdinov, S.W. Turner, A.T. Zehnder, J.M. Parpia, H.G. Craighead: Nanomechanical resonant structures as tunable passive modulators, Appl. Phys. Lett. 80, 3617–3619 (2002)

    Article  Google Scholar 

  66. A.M. Fennimore, T.D. Yuzvinsky, W.Q. Han, M.S. Fuhrer, J. Cummings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature 424, 408–410 (2003)

    Article  Google Scholar 

  67. D.W. Carr, S. Evoy, L. Sekaric, H.G. Craighead, J.M. Parpia: Measurement of mechanical resonance and losses in nanometer scale silicon wires, Appl. Phys. Lett. 75, 920–922 (1999)

    Article  Google Scholar 

  68. D.W. Carr, L. Sekaric, H.G. Craighead: Measurement of nanomechanical resonant structures in single-crystal silicon, J. Vac. Sci. Technol. B 16, 3821–3824 (1998)

    Article  Google Scholar 

  69. S. Evoy, D.W. Carr, L. Sekaric, A. Olkhovets, J.M. Parpia, H.G. Craighead: Nanofabrication and electrostatic operation of single-crystal silicon paddle oscillators, J. Appl. Phys. 86, 6072–6077 (1999)

    Article  Google Scholar 

  70. L. Sekaric, J.M. Parpia, H.G. Craighead, T. Feygelson, B.H. Houston, J.E. Butler: Nanomechanical resonant structures in nanocrystalline diamond, Appl. Phys. Lett. 81, 4455–4457 (2002)

    Article  Google Scholar 

  71. A.N. Cleland, M.L. Roukes: A nanometre-scale mechanical electrometer, Nature 392, 160–162 (1998)

    Article  Google Scholar 

  72. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Measurement of the quantum of thermal conductance, Nature 404, 974–977 (2000)

    Article  Google Scholar 

  73. S. Evoy, A. Olkhovets, L. Sekaric, J.M. Parpia, H.G. Craighead, D.W. Carr: Temperature-dependent internal friction in silicon nanoelectromechanical systems, Appl. Phys. Lett. 77, 2397–2399 (2000)

    Article  Google Scholar 

  74. K.L. Ekinci, X.M.H. Huang, M.L. Roukes: Ultrasensitive nanoelectromechanical mass detection, Appl. Phys. Lett. 84, 4469–4471 (2004)

    Article  Google Scholar 

  75. B. Illic, H.G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil: Attogram detection using nanoelectromechanical oscillators, J. Appl. Phys. 95, 3694–3703 (2004)

    Article  Google Scholar 

  76. T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K. Wago, D. Rugar: Attonewton force detection using ultrathin silicon cantilevers, Appl. Phys. Lett. 71, 288–290 (1997)

    Article  Google Scholar 

  77. B. Illic, Y. Yang, H.G. Craighead: Virus detection using nanoelectromechanical devices, Appl. Phys. Lett. 85, 2604–2606 (2004)

    Article  Google Scholar 

  78. H. Liu, J. Kameoka, D.A. Czaplewski, H.G. Craighead: Polymeric nanowire chemical sensor, Nano Lett. 4, 617–675 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Darrin J. Young , Christian A. Zorman or Mehran Mehregany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Young, D.J., Zorman, C.A., Mehregany, M. (2010). MEMS/NEMS Devices and Applications. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics