Skip to main content

Aestivation in the Fossil Record: Evidence from Ichnology

  • Chapter
  • First Online:
Aestivation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 49))

Abstract

Aestivation is a physiological and behavioral response to high temperature or low moisture conditions. Therefore, it is typically not considered to be capable of being preserved in the fossil record. However, most aestivating organisms produce a burrow to protect themselves from the harmful environmental conditions that trigger aestivation. These structures can be preserved in the rock record as trace fossils. While trace fossils are abundant in the continental fossil record, few are definitively associated with aestivation. Interpreting aestivation behavior from fossil burrows requires a detailed examination and interpretation of the surrounding sedimentary rocks and comparisons with taxonomically and ecologically similar extant organisms. Currently, only four types of aestivation structures are recognized in the fossil record: Pleistocene earthworm chambers, Devonian to Cretaceous lungfish burrows, Permian lysorophid burrows, and Permian to Triassic dicynodont burrows. The trace fossil evidence suggests that aestivation evolved independently among continental organisms in several clades during the middle to late Paleozoic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Atkinson RJA, Taylor AC (1991) Burrows and burrowing behaviour of fish. In: Meadows PS, Meadows A (eds) The environmental impact of burrowing animals and animal burrows. Clarendon, Oxford, pp 133–155

    Google Scholar 

  • Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (1992) Terrestrial ecosystems through time. The University of Chicago Press, Chicago

    Google Scholar 

  • Berman DS (1976) Occurrence of Gnathorhiza (Osteichthyes: Dipnoi) in aestivation burrows in the lower Permian of New Mexico with description of a new species. J Paleontol 50:1034–1039

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy, and applications. Chapman and Hall, London

    Google Scholar 

  • Buol SW, Southard RJ, Graham RC, McDaniel PA (2003) Soil genesis and classification. Blackwell, Ames

    Google Scholar 

  • Carlson KJ (1968) The skull morphology and estivation burrows of the Permian lungfish, Gnathorhiza serrata. J Geol 76:641–663

    Article  Google Scholar 

  • Carroll RL (1988) Vertebrate paleontology and evolution. W.H. Freeman, New York

    Google Scholar 

  • Crowley TJ (1994) Pangean climates. In: Klein GD (ed) Pangea: Paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. GSA Special Paper 288, pp. 25–40

    Google Scholar 

  • DiMichele WA, Tabor NJ, Chaney DS, Nelson WJ, (2006) From wetlands to wetspots: environmental tracking and the fate of Carboniferous elements in Early Permian tropical floras. In: Greb SF, DiMichele WA (eds) Wetlands through time. Geological Society of America Special Paper 399, Boulder, pp 223-248.

    Google Scholar 

  • Duda JJ, Krzysik AJ, Barbour RW (1999) Effects of drought on desert tortoise movement and activity. J Wildl Manage 63:1181–1192

    Article  Google Scholar 

  • Chapple DG (2003) Ecology, life-history, and behavior in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetological Monographs 17:145–180

    Article  Google Scholar 

  • Dubiel RF, Blodgett RH, Bown TM (1987) Lungfish burrows in the Upper Triassic Chinle and Dolores formations, Colorado Plateau. J Sediment Petrol 57:512–521

    Google Scholar 

  • Dubiel RF, Blodgett RH, Bown TM (1989) Lungfish burrows in the upper Triassic Chinle and Dolores formations, Colorado plateau – reply. J Sediment Petrol 59:876–878

    Google Scholar 

  • Emerson SB (1976) Burrowing in frogs. J Morphol 149:437–458

    Article  Google Scholar 

  • Etheridge K (1990) Water balance in estivating sirenid salamanders. Herpetologica 46:400–406

    Google Scholar 

  • Fishman AP, Pack AI, Delaney RG, Galante RJ (1986) Estivation in Protopterus. J Morphol (Suppl) 1:237–248

    Google Scholar 

  • Garcia W, Storrs G, Greb S (2006) Lungfish burrows from the Mississippian (Chesterian) of northwestern Kentucy. J Vert Paleo (Suppl) 26:65.

    Google Scholar 

  • Gobetz KE, Lucas SG, Lerner AJ (2006) Lungfish burrows of varying morphology from the Upper Triassic Redonda Formation, Chinle Group, eastern New Mexico. In: Harris JD, Lucas SG, Spielmann JA, Lockley MG, Milner ARC, Kirkland JI (eds). The Triassic-Jurassic Terrestrial Transiti. New Mexico Museum of Natural History and Science Bulletin 37:140–146

    Google Scholar 

  • Greenwood PH (1986) The natural history of African lungfishes. J Morphol (Suppl) 1:163–179

    Google Scholar 

  • Hasiotis ST (2002) Continental trace fossils. Society for Sedimentary Geology, Tulsa

    Google Scholar 

  • Hasiotis ST (2007) Continental ichnology: fundamental processes and controls on trace fossil distribution. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 268–284

    Google Scholar 

  • Hasiotis ST, Mitchell CE (1989) Lungfish burrows in the upper Triassic Chinle and Dolores formations, Colorado Plateau – discussion: new evidence suggests origin by a burrowing decapod crustacean. J Sediment Petrol 59:871–875

    Google Scholar 

  • Hasiotis ST, Mitchell CE, Dubiel RF (1993) Application of morphologic burrow interpretations to discern continental burrow architects: lungfish or crayfish? Ichnos 2:315–333

    Article  Google Scholar 

  • Hasiotis ST, McCahon TJ, Miller KB (2002) Burrows of the lungfish Gnathorhiza within paleosols of the lower Permian (Wolfcampian) of eastern Kansas: a unique paleoenvironmental setting and justification for a new ichnotaxon. GSA Abstracts with Programs 34:212

    Google Scholar 

  • Hasiotis ST, Kraus MJ, Demko TM (2007) Climatic controls on continental trace fossils. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 172–195

    Google Scholar 

  • Heatwole H, Taylor J (1987) Ecology of reptiles. Surrey Beatty, Chipping Norton

    Google Scholar 

  • Hembree DI, Martin LD, Hasiotis ST (2004) Amphibian burrows and ephemeral ponds of the Lower Permian Speiser Shale, Kansas: evidence for seasonality in the mid-continent. Palaeogeogr Palaeoclimatol Palaeoecol 203:127–152

    Article  Google Scholar 

  • Hembree DI, Hasiotis ST, Martin LD (2005) Torridorefugium eskridgensis (new ichnogenus and ichnospecies): amphibian aestivation burrows from the Lower Permian Speiser Shale of Kansas. J Paleontol 79:583–593

    Article  Google Scholar 

  • Holman JA (2003) Fossil frogs and toads of North America. Indiana University Press, Bloomington

    Google Scholar 

  • Holman JA (2006) Fossil salamanders of North America. Indiana University Press, Bloomington

    Google Scholar 

  • Jiménez JJ, Brown GG, Decaens T, Feijoo A, Lavelle P (2000) Differences in the timing of diapause and patterns of aestivation in tropical earthworms. Pedobiologica 44:677–694

    Article  Google Scholar 

  • Kendall AC, Harwood GM (1996) Marine evaporites: arid shorelines and basins. In: Reading HG (ed) Sedimentary environments: processes, facies, and stratigraphy. Blackwell Science, Oxford, pp 281–324

    Google Scholar 

  • Kocurek GA (1996) Desert aeolian systems. In: Reading HG (ed) Sedimentary environments: processes, facies, and stratigraphy. Blackwell Science, Oxford, pp 125–153

    Google Scholar 

  • Lavelle P, Spain AV (2005) Soil ecology. Springer, Berlin

    Google Scholar 

  • Lee KE (1985) Earthworms, their ecology and relationships with soils and land use. Academic, Sydney

    Google Scholar 

  • Martin LD, Bennett DK (1977) The burrows of the Miocene beaver Palaeocastor, western Nebraska, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 22:173–193

    Article  Google Scholar 

  • Mayhew WW (1968) Biology of desert amphibians and reptiles. In: Brown GW (ed) Desert biology: special topics on the physical and biological aspects of arid regions. Academic, New York, pp 196–356

    Google Scholar 

  • McAllister JA (1990) The lungfish Gnathorhiza and its burrows from the Permian of Kansas. PhD dissertation, University of Kansas, Lawrence, Kansas

    Google Scholar 

  • McGinnis SM, Voigt WG (1971) Thermoregulation in the desert tortoise, Gopherus agassizii. Comp Biochem Physiol A 40:119–126

    Article  Google Scholar 

  • Meyer RC (1999) Helical burrows as a palaeoclimate response: Daimonelix by Palaeocastor. Palaeogeogr Palaeoclimatol Palaeoecol 147:291–298

    Article  Google Scholar 

  • Miller MF, Hasiotis ST, Babcock LE, Isbell JL, Collinson JW (2001) Tetrapod and large burrows of uncertain origin in Triassic high latitude floodplain deposits, Antarctica. Palaios 16:218–232

    Google Scholar 

  • Olson EC, Bolles K (1975) Permo-Carboniferous fresh water burrows. Fieldiana Geology 33:271–290

    Google Scholar 

  • Parrish JT (1998) Interpreting pre-quaternary climate from the geologic record. Columbia University Press, New York

    Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Estivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental physiology of the Amphibians. University of Chicago Press, Chicago, pp 250–274

    Google Scholar 

  • Reno HW, Gehlbach FR, Turner RA (1972) Skin and aestivational cocoon of the aquatic amphibian, Siren intermedia Le Conte. Copeia 4:625–631

    Article  Google Scholar 

  • Retallack GJ (2001) Soils of the past: an introduction to paleopedology. Blackwell Science, Oxford

    Google Scholar 

  • Romer AS, Olson EC (1954) Aestivation in a Permian lungfish. Brevoria 39:1–8

    Google Scholar 

  • Shear WA, Seldon PA (2001) Rustling in the undergrowth: animals in early terrestrial ecosystems. In: Gengel PG, Edwards D (eds) Plants invade the land. Columbia University Press, New York, pp 29–51

    Google Scholar 

  • Small B, Evans A (2006) Taxonomic diversity of estivating species in the lowest Permian of North America: onset of seasonality and comments on physiological plasticity. J Vert Paleo (Suppl) 26:126

    Google Scholar 

  • Smith RMH (1987) Helical burrow casts of therapsid origin from the Beaufort Group (Permian) of South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 60:155–170

    Article  Google Scholar 

  • Sturla M, Paola P, Carlo G, Angela MM, Maria UB (2002) Effects of induced aestivation in Protopterus annectens: a histomorphological study. J Exp Zool 292:26–31

    Article  PubMed  Google Scholar 

  • Surlyk FS, Milàn J, Noe-Nygaard N (2008) Dinosaur tracks and possible lungfish aestivation burrows in a shallow coastal lake; lowermost Cretaceous, Bornholm, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 267:292–304

    Article  Google Scholar 

  • Traeholt C (1995) Notes on the burrows of the water monitor lizard, Varanus salvator. Malayan Nature Journal 49:979–997

    Google Scholar 

  • Verde M, Ubilla M, Jimenez JJ, Genise JF (2007) A new earthworm trace fossil from paleosols: aestivation chambers from the Late Pleistocene Sopas Formation of Uruguay. Palaeogeogr Palaeoclimatol Palaeoecol 243:339–347

    Article  Google Scholar 

  • Wake MH (1993) The skull as a locomotor organ. In: Hanken J, Hall BK (eds) The skull: functional and evolutionary mechanisms, vol 3. University of Chicago Press, Chicago

    Google Scholar 

  • Wellstead CF (1991) Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bull Am Mus Nat Hist 209:1–90

    Google Scholar 

  • Worsely TR, Moore TL, Fraticelli CM, Scotese CR (1994) Phanerozoic CO2 levels and global temperatures inferred from changing paleogeography. In: Klein GD (ed) Pangea: paleoclimate, tectonics, and sedimentation during accretion, zenith, and breakup of a supercontinent. GSA Special Paper 288, pp. 25–40

    Google Scholar 

  • Zug GR, Vitt LJ, Caldwell JP (2001) Herpetology. Academic, San Diego

    Google Scholar 

  • Zimmerman LC, O’Conner MP, Bulova SJ, Spotila JR, Kemp SJ, Salice CJ (1994) Thermal ecology of desert tortoises in the eastern Mojave Desert: seasonal patterns of operative and body temperature, and microhabitat utilization. Herpetological Monograph 8:45–59

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel I. Hembree .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hembree, D.I. (2010). Aestivation in the Fossil Record: Evidence from Ichnology. In: Arturo Navas, C., Carvalho, J. (eds) Aestivation. Progress in Molecular and Subcellular Biology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02421-4_12

Download citation

Publish with us

Policies and ethics