Skip to main content

Diapause and Estivation in Sponges

  • Chapter
  • First Online:
Aestivation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 49))

Abstract

Sponges can be found in fresh or saltwater habitats. As part of their lifecycle, many sponges produce gemmules as a means of surviving environmental challenge. In most sponges, the gemmules contain cells that are initially in a state of metabolic arrest that is controlled by endogenous factors. This state is known as diapause. Following a period of exposure to unfavorable conditions, the cells in the gemmule transit from diapause into a state known as quiescence in which metabolic depression is controlled by environmental factors. When favorable conditions return, the gemmules germinate and produce a new sponge. Production of gemmules is triggered by environmental factors such as decreased temperature or desiccation and involves cell aggregation of thesocytes and the laying down of the gemmule coat. Thesocytes contain yolk platelets as an energy store and high concentrations of polyols that maintain high osmotic concentration in the cells of the gemmules. The high osmotic concentration maintains metabolic depression and turns off cell division. It is the inability to reduce the osmotic concentration that maintains the gemmules in diapause. Transition to quiescence requires the ability of the cells in the gemmules to convert the polyols to glycogen, and thus reduce the osmotic concentration. At this stage, the cells are able to reduce osmotic concentration but do not until favorable conditions return. Early in the germination process, the polyols are converted to glycogen, reducing the osmotic pressure and releasing the inhibition of cell division and metabolic rate. Both cell division and metabolic rate increase eventually leading to germination of the gemmules and production of a new sponge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bazer LJ, Fell PE (1986) Gemmules of Anheteromeyania ryderi and Heteromeyenia tubisperma (Porifera: Spongillidae) from southern New England undergo diapause. Freshw Biol 16:479–484

    Article  Google Scholar 

  • Benfey TJ, Reiswig HM (2005) Temperature, pH and photoperiod effects upon gemmule hatching in the freshwater sponge, Ephydatia mulleri (Porifera, Spongillidae). J Exp Zool 221(1):13–21

    Article  Google Scholar 

  • Bohm M, Schröder HC, Müller IM, Müller WEG, Gamulin V (2000) The mitogen-activated protein kinase p38 pathway is conserved in metazoans: cloning and activation of p38 of the SAPK2 subfamily from the sponge Suberites domuncula. Biol Cell 92(2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Bronsted HV, Lovtrup E (1953) The respiration of sponge gemmules without and with symbiotic unicellular algae. Vidensk Medd Dansk Naturhist Foren 115:145–157

    Google Scholar 

  • Casceres CE (1997) Dormancy in invertebrates. Invert Biol 116(4):371–383

    Article  Google Scholar 

  • Dayton PK, Robilliard GA, Paine RT, Dayton LB (1974) Biological accommodation in the benthic community at McMurdo Sound, Antarctica. Ecological Monographs 44:105–128

    Google Scholar 

  • Droscher I, Waringer J (2007) Abundance and microhabitats of freshwater sponges (Spongillidae) in a Danubean floodplain in Austria. Freshw Biol 52:998–1008

    Article  Google Scholar 

  • De Vos L (1971) Etude ultrastructurale de la gemmulogenese chez Ephydatia fluvialitilis. J Microsc 10:283–304

    Google Scholar 

  • Fell PE (1987b) Influences of temperature and desiccation on breaking diapause in the gemmules of Eunapius fragilis (Leidy). Int J Invert Reprod Dev 11:305–315

    Google Scholar 

  • Fell PE (1987a) Synergy between low temperature and desiccation in breaking gemmule diapause of Eunapius fragilis (Leidy). Int J Invert Reprod Dev 12:331–340

    Google Scholar 

  • Fell PE (1992) Salinity tolerance of the gemmules of Eunapius fragilis (Leidy) and the inhibition of germination by various salts. Hydrobiologia 242:33–39

    CAS  Google Scholar 

  • Fell PE (1994) Dormancy of the gemmules of Eunapius fragilis and Ephydatia muelleri in New England. In: van Soest RWM, van Kempen ThMG, Braekman JC (eds) Sponges in time and space. Balkema AA, Roterdam, pp 313–320

    Google Scholar 

  • Fell PE (1995) Deep diapause and the influence of low temperature on the hatching of gemmules of Spongilla lacustris (L.) and Eunapius fragilis (Leidy). Inv Biol 114(1):3–8

    Article  Google Scholar 

  • Fell PE (1998) Ecology and physiology of dormancy in sponges. Arch Hydrobiol Spec Issues Advanc Limnol 52:71–84

    Google Scholar 

  • Freeman CJ, Gleason DF, Ruzicka R, van Soest RWM, Harvey AW, McFall G (2007) A biogeographic comparison of sponge fauna from Gray’s Reef National Marine Sanctuary and other hard-bottom reefs of coastal Georgia. In: Custódio MR, Lôbo-Hajdu G, Hajdu E, Muricy G (eds) Porifera research: biodiversity, innovation and sustainability. Série Livros 28. Museu Nacional, Rio de Janeiro. pp. 319–325.

    Google Scholar 

  • Frost TM (1991) Porifera. In: James Thorp J, Covich A (ed) Ecology and classification of North American freshwater invertebrates. Academic. pp 95–124

    Google Scholar 

  • Frost TM (1978) The impact of the freshwater sponge Spongilla lacustris on a sphagnum bog-pond. Verh Int Verein Limnol 20:2368–2371

    Google Scholar 

  • Frost TM, Williamson CE (1980) In situ determination of the effect of symbiotic algae on growth of the freshwater sponge, Spongilla lacustris. Ecology 61:1361–1370

    Article  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  CAS  PubMed  Google Scholar 

  • Hand SC, Podrabsky J (2000) Bioenergetics of diapause and quiescence in aquatic animals. Thermochemica Acta 349:31–42

    Article  CAS  Google Scholar 

  • Harrison FW, Cowden RR (1975) Cytochemical observations of gemmule development in Eunapius fragilis (Laidy): Porifera; Spongillidae. Differentiation 4:99–109

    Article  Google Scholar 

  • Harsha RE, Francis JC, Poirrier MA (1983) Water temperature: a factor in the seasonality of two freshwater sponge species, Ephydatia fluviatilis and Spongilla alba. Hydrobiologia 102:145–150

    Article  Google Scholar 

  • Hooper JNA, van Soest RWM (2002) Systema Porifera: guide to the supraspecific classification of sponges and spongiomorphs (Porifera). Plenum, New York

    Google Scholar 

  • Kauffold P, Spannhof L (1963) Histochemische untersuchungen an den reservestoffen der archaeocyten in gemmulen von Ephydatia mulleri Lbk. Naturwissenschaften 50:384–385

    Article  Google Scholar 

  • Koyanagi M, Ono K, Suga H, Iwabe N, Miyata T (1998) Phospholipase C cDNAs from sponge and hydra: antiquity of genes involved in the inositol phospholipid signaling pathway. FEBS Lett 439:66–70

    Article  CAS  PubMed  Google Scholar 

  • Loomis SH, Hand SC, Fell PE (1996a) Metabolism of gemmules from the freshwater sponge Eunapius fragilis during diapause and post-diapause states. Biol Bull 191:385–392

    Article  CAS  Google Scholar 

  • Loomis SH, Ungemach LF, Branchini BR, Hand SC, Fell PE (1996b) Carbohydrate mobilization during germination of post-diapausing gemmules of the freshwater sponge Eunapius fragilis. Biol Bull 191:393–401

    Article  CAS  Google Scholar 

  • Loomis SH, Bettridge A, Branchini BR (2009) The effects of elevated osmotic concentration on control of germination in the gemmules of freshwater sponges Eunapius fragilis and Anheteromeyania ryderi. Physiol Biochem Zool, in press

    Google Scholar 

  • Maldonado M (2004) Choanoflagellates, choanocytes, and animal multicellularity. Invertebr Biol 123:1–22

    Article  Google Scholar 

  • Manconi R, Murgia S, Pronzato R (2008) Sponges from African inland waters: the genus Eunapius (Haplosclerida, Spongilla, Spongillidae). Fundamental and applied limnology. Arch Hydrobiol 170(4):333–350

    Google Scholar 

  • McDougal KD (1943) Sessile marine invertebrates of Beaufort, N.C. Ecol Monogr 13:321–374

    Article  Google Scholar 

  • Ostrom KM, Simpson TL (1979) A recent study of calcium and other divalent cations in the release from dormance of freshwaer sponge gemmules. In: Lévi C, Boury-Esnault N (eds) Sponge biology. National Center of Scientific Research, Paris, pp 39–46

    Google Scholar 

  • Petermans-Pe J, De Vos L, Rasmont R (1975) Reproduction asexuee de l’eponge siliceuse Ephydatia fluviatilis L. dans un melie fortement apauv rien silice. Vie Milieu 25:187–196

    Google Scholar 

  • Plotkin A, Boury-Esnault N (2004) Alleged cosmopolitanism in sponges: the example of a common Arctic Polymastia (Porifera, Demospongiae, Hadromerida). Zoosystema 26(1):13–20

    Google Scholar 

  • Poirrier MA (1974) Ectomorphic variation in gemmuloscleres of Ephydatia fluvialitilis Linaeus (Porifera;Spongillidae) with comments upon its systematics and ecology. Hydrobiologia 44:337–347

    Article  Google Scholar 

  • Poirrier MA (1976) A taxonomic study of the Spongilla alba, S. cenota, S. wagneri group (Porifera:Spongillidae) with ecological observations of S. alba. In: Harrison FW, Cowden RR (eds) Aspects of sponge biology. Academic, New York, pp 203–213

    Google Scholar 

  • Pronzato R, Manconi R, Corriero G (1993) Biorhythm and environmental control in the life history of Ephydatia fluviatilis (Demospongiae, Spongillidae). Boll Zool 60:63–67

    Google Scholar 

  • Ricciardi A, Reiswig HM (1993) Freshwater sponges (Porifera, Spongillidae) of eastern Canada: taxonomy, distribution, and ecology. Can J Zool 71:665–682

    Google Scholar 

  • Rasmont R (1954) La diapause chez les Spongillides. Bull Acad R Belg Cl Sci 40:288–304

    Google Scholar 

  • Rasmont R (1962) The physiology of germination of freshwater sponges. Symposium for the Society for Study of Development and Growth 20:3–25

    Google Scholar 

  • Rasmont R (1963) Le role de la taille et de la nutrition dans le determinisme de la gemmulation chez les spongillides. Dev Biol 8:243–271

    Article  Google Scholar 

  • Rasmont R (1974) Stimulation of cell aggregation by theophylline in the asexual reproduction of freshwater sponges (Ephydatia fluviatilis). Experientia 30:792–794

    Google Scholar 

  • Reiswig HM, Miller TL (1998) Freshwater sponge gemmules survive months of exposure to anoxia. Invertebr Biol 117:1–8

    Article  Google Scholar 

  • Rozenfeld F (1971) Effects de la perforation de la coque des gemmules d’Ephydatia fluviatilis (spongillides) sur leur developpement ulterieur en presence de gemmulostasin. Arch Biol 82:103–113

    Google Scholar 

  • Rozenfeld F (1974) Biochemical control of fresh-water sponge development: effect of RNA, DNA and protein synthesis of an inhibitor secreted by the sponge. J Embryol Exp Morphol 32:287–295

    CAS  PubMed  Google Scholar 

  • Schmahl GP (1990) Community structure and ecology of sponges associated with four southern Florida coral reefs. In: Rutzler K (ed) New perspectives in sponge biology. Smithsonian Institution Press, Washington, DC, pp 376–383

    Google Scholar 

  • Schmidt I (1970) Étude préliminaire de la différenciation des thesocytes d’Ephydatia fluviatilis L. extraits mecaniquement de la gemmule. CR Acad Sci 271:924–927

    Google Scholar 

  • Simpson TL, Gilbert JJ (1973) Gemmulation, gemmule hatching, and sexual reproduction in fresh-water sponges. I. The life cycles of Spongilla lacustris and Tubella pennsylvanica. Trans Amer Micros Soc 92:422–433

    Google Scholar 

  • Simons J, Muller L (1966) Ribonucleic acid-storage inclusions of freshwater sponge archeocytes. Nature 210:847–848

    Article  CAS  Google Scholar 

  • Simpson TL, Vaccaro CA, Sha’afi RI (1973) The role of intragemmular osmotic concentration in the cell division and hatching of gemmules of the fresh-water sponge Spongilla lacustris (Porifera). Zeitschrift Fuer Morphologie Der Tiere 76:339–357

    Google Scholar 

  • Simpson TL (1984) The cell biology of sponges. Springer, New York, NY

    Google Scholar 

  • Simpson TL, Fell PE (1974) Dormancy among the porifera: gemmule formation and germination in fresh-water and marine sponges. Trans Am Microsc Soc 93(4):544–577

    Article  Google Scholar 

  • Simpson TL, Rodan GA (1976) Role of camp in the release from dormancy of freshwater sponge gemmules. Dev Biol 49:544–547

    Article  CAS  PubMed  Google Scholar 

  • Sterrer W (1986) Marine fauna and flora of Bermuda. Wiley, New York

    Google Scholar 

  • Thakur NL, Müller WEG (2004) Biotechnological potential of marine sponges. Curr Sci 86(11):1506–1512

    CAS  Google Scholar 

  • van de Vyver G, Willenz P (1975) An experimental study of the life cycle of the fresh-water sponge Ephydatia fluvialitilis in its natural surroundings. Wilhelm Roux Arch Entwickl Mech Org 177:41–52

    Article  Google Scholar 

  • Wiedenmayer F (1977) Shallow water sponges of the Western Bahamas. Experientia Suppl 28:1–287

    Google Scholar 

  • Worheide G, Solé-Cava AM, Hooper J (2005) Biodiversity, molecular ecology and phylogeography of marine sponges: patterns, implications and outlooks. Integr Comp Biol 45:377–385

    Article  Google Scholar 

  • Wulff J (2006) Ecological interactions of marine sponges. Can J Zool 84:146–166

    Article  Google Scholar 

  • Zeuthen E (1939) On the hibernation of Spongilla lacustris (L.) Zeitschrift für vergleichende. Physiologie 26:537–547

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loomis, S.H. (2010). Diapause and Estivation in Sponges. In: Arturo Navas, C., Carvalho, J. (eds) Aestivation. Progress in Molecular and Subcellular Biology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02421-4_11

Download citation

Publish with us

Policies and ethics