Skip to main content

Abstract

Fruit is a unique and important organ that developed in higher plants during evolution. Fruits protect seeds during development and serve as vehicles for seed dispersal to different habitats for species propagation (Tanksley 2004). Fleshy fruits are important in agricultural sciences because of their nutritional and economic values for humans. Important plant families that produce fleshy fruits include the Solanaceae (e.g. tomato, eggplant, pepper), the Cucurbitaceae (e.g. melon, cucumber, watermelon, pumpkin), the Roseaceae (e.g. apple, pear, strawberry), the Rutaceae (e.g. citrus) and the Vitaceae (e.g. grape).

Fleshy fruit development is essentially divided into four stages (Gillaspy et al. 1993), as depicted in Fig. 15.1. The first stage is floral development, which is the period from floral initiation to anthesis, when the identity, number and shape of floral organs are determined. The second stage is cell division, which commences with fertilization. Cell enlargement constitutes the third stage, when multiple rounds of endoreduplication and rapid cell expansion occur until the onset of ripening. Ripening is the fourth stage, which begins after fruit growth has ceased and involves rapid biochemical and structural changes that determine fruit aroma, texture, nutritional components (e.g. sugars, organic acids, amino acids) and colour.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander L, Grierson D (2002) Ethylene biosynthesis and action in tomato: a model for climacteric fruit ripening. J Exp Bot 53:2039–2055

    Article  PubMed  CAS  Google Scholar 

  • Ayub R, Guis M, BenAmor M, Gillot L, Roustan JP, Latché A, Bouzayen M, Pech JC (1996) Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruit. Nature Biotechnol 14:862–866

    Article  CAS  Google Scholar 

  • Bain JM, Robertson RN (1951) The physiology of growth in apple fruits. I. Cell size, cell number and fruit development. Aust J Sci Res 4:75–91

    CAS  Google Scholar 

  • Barow M, Meister A (2003) Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell Environ 26:571–584

    Article  Google Scholar 

  • Barrero LS, Cong B, Wu F, Tanksley SD (2006) Developmental characterization of the fasciated locus and mapping of Arabidopsis candidate genes involved in the control of floral meristem size and carpel number in tomato. Genome 49:991–1006

    Article  PubMed  CAS  Google Scholar 

  • Bauchot AD, Mottram DS, Dodson AT, John P (1998) Effect of aminocyclopropane-1-carboxylic acid oxidase antisense gene on the formation of volatile esters in Cantaloupe Charentais melon (cv. Védrantais). J Agric Food Chem 46:4787–4792

    Article  CAS  Google Scholar 

  • Biale JB (1964) Growth, maturation and senescence in fruits. Science 146:880–888

    Article  PubMed  CAS  Google Scholar 

  • Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharv Biol Technol 28: 1–25

    Article  CAS  Google Scholar 

  • Bower J, Holdford P, Latché A, Pech JC (2002) Culture conditions and detachment of the fruit influence the effect of ethylene on the climacteric respiration of the melon. Postharv Biol Technol 26:135–146

    Article  CAS  Google Scholar 

  • Bradley MV, Crane JC (1955) The effect of 2,4,5-trichlorophenoxyacetic acid on cell and nuclear size and endopolyploidy in parenchyma of apricot fruits. Am J Bot 42:273–281

    Article  CAS  Google Scholar 

  • Brummell DA, Harpster MH, Dunsmuir P (1999) Differential expression gene family members during growth and ripening of tomato fruit. Plant Mol Biol 39:161–169

    Article  PubMed  CAS  Google Scholar 

  • Catalá C, Rose JKC, Bennett AB (2000) Auxin-regulated genes encoding cell wall-modifying proteins are expressed during early tomato fruit growth. Plant Physiol 122:527–534

    Article  PubMed  Google Scholar 

  • Chen F, Dahal P, Bradford KJ (2001) Two tomato expansin genes show divergent expression and localization in embryos during seed development and germination. Plant Physiol 127: 928–936

    Article  PubMed  CAS  Google Scholar 

  • Cheniclet C, Rong WY, Causse M, Frangne N, Bolling L, Carde J-P, Renaudin J-P (2005) Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth. Plant Physiol 139:1984–1994

    Article  PubMed  CAS  Google Scholar 

  • Cho H-T, Kende H (1997a) Expression of expansin genes is correlated with growth in deepwater rice. Plant Cell 9:1661–1671

    Article  CAS  Google Scholar 

  • Cho H-T, Kende H (1997b) Expansins and internodal growth of deepwater rice. Plant Physiol 113:1145–1151

    Article  CAS  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nature Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Coombe BG (1976) The development of fleshy fruits. Annu Rev Plant Physiol 27:507–528

    Article  Google Scholar 

  • Cosgrove DJ, Li LC, Cho H-T, Hoffmann-Benning S, Moore RC, Blecker D (2002) The growing world of expansin. Plant Cell Physiol 43:1436–1444

    Article  PubMed  CAS  Google Scholar 

  • Crane JC (1964) Growth substances in fruit setting and development. Annu Rev Plant Physiol 15:303–326

    Article  CAS  Google Scholar 

  • Fisher RL, Bennett AB (1991) Role of cell wall hydrolases in fruit ripening. Annu Rev Plant Physiol Plant Mol Biol 42:675–703

    Article  Google Scholar 

  • Fos M, Nuez F, García-Martínez JL (2000) The pat-2 gene, which induces natural parthenocarpy, alters gibberellin content in unpollinated tomato ovaries. Plant Physiol 122:471–479

    Article  PubMed  CAS  Google Scholar 

  • Fos M, Proaño K, Nuez F, García-Martínez JL (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol Plant 111:545–550

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Nesbitt TC, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert K, Tanksley SD (2000) fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a developmental perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2007) Fruit ripening mutants yield insight into ripening control. Curr Opin Plant Biol 10:283–289

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt EE, Huberman M, Goren R (1993) Probing the roles of endogenous ethylene in the degreening of citrus fruit with ethylene antagonists. Plant Growth Regul 12:325–329

    Article  CAS  Google Scholar 

  • Gonzalez N, Gévaudant F, Hernould M, Chivalier C, Mouras A (2007) The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J 51:642–655

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Ibeas D, Blanca J, Roig C, Gonzalez-To M, Pico B, Truniger V, Gomez P, Deleu W, Cano-Delgado A, Arus P, Nuez F, Garcia-Mas J, Puigdomenech P, Aranda MA (2007) MELOGEN: An EST database for melon functional genomics. BMC Genomics 8:306. doi:10.1186/1471-2164-8-306

    Article  PubMed  Google Scholar 

  • Gorguet B, van Heusden AW, Lindhout P (2005) Parthenocarpic fruit development in tomato. Plant Biol 7:131–139

    Article  PubMed  CAS  Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Guis M, Botondi R, Ben Amor M, Ayub R, Bouzayen M, Pech JC, Latché A (1997) Ripening-associated biochemical traits of cantaloupe Charentais melons expressing an antisense ACC oxidase transgene. J Am Soc Hort Sci 122:748–751

    CAS  Google Scholar 

  • Gustafson FG (1939) Auxin distribution in fruits and its significance in fruit development. Am J Bot 26:189–194

    Article  CAS  Google Scholar 

  • Harada T, Kurabayashi W, Yamai M, Wakasa Y, Satoh T (2005) Involvement of cell proliferation and cell enlargement in increasing the fruit size of Malus species. Sci Hort 105:447–456

    Article  CAS  Google Scholar 

  • Higashi K, Hosoya K, Ezura H (1999) Histological analysis of fruit development between two melon (Cucumis melo L. reticulatus) genotypes setting a different size of fruit. J Exp Bot 50:1593–1597

    Article  CAS  Google Scholar 

  • Hiwasa K, Kinugasa Y, Amano S, Hashimoto A, Nakano R, Inaba A, Kubo Y (2003a) Ethylene is required for both the initiation and progression of softening in pear (Pyrus communis L.) fruit. J Exp Bot 54:771–779

    Article  CAS  Google Scholar 

  • Hiwasa K, Rose JKC, Nakano R, Inaba A, Kubo Y (2003b) Differential expression of seven α-expansin genes during growth and ripening of pear fruit. Physiol Plant 117:564–572

    Article  CAS  Google Scholar 

  • Inaba A, Ishida M, Sobajima Y (1976) Changes in endogenous hormone concentrations during berry development in relation to the ripening of Delaware grapes. J Japan Soc Hort Sci 45: 245–252

    Article  Google Scholar 

  • Ishimaru M, Smith DL, Gross KC, Kobayashi S (2007) Expression of three expansin genes during development and maturation of Kyoho grape berries. J Plant Physiol 164:1675–1682

    Article  PubMed  CAS  Google Scholar 

  • John PCL, Qi R (2008) Cell division and endoreduplication: doubtful engines of vegetative growth. Trends Plant Sci 13:121–127

    PubMed  CAS  Google Scholar 

  • Johnson PR, Ecker JR (1998) The ethylene gas signal transduction pathway: a molecular perspective. Annu Rev Genet 32:227–254

    Article  PubMed  CAS  Google Scholar 

  • Joubés J, Phan T-H, Just D, Rothan C, Bergounioux C, Raymond P, Chevalier C (1999) Molecular and biochemical characterization of the involvement of cyclin-dependent kinase DCKA during the early development of tomato fruit. Plant Physiol 121:857–869

    Article  PubMed  Google Scholar 

  • Joubés J, Walsh D, Raymond P, Chevalier C (2000) Molecular characterization of the expression of distinct classes of cyclins during the early development of tomato fruit. Planta 211:430–439

    Article  PubMed  Google Scholar 

  • Joubés J, Lemaire-Chamley M, Delmas F, Walter J, Hernould M, Mouras A, Raymond P, Chevalier C (2001) A new C-type cyclin-dependent kinase from tomato expressed in dividing tissue does not interact with mitotic and G1 cyclins. Plant Physiol 126:1403–1415

    Article  PubMed  Google Scholar 

  • Kato-Emori S, Higashi K, Hosoya K, Kobayashi T, Ezura H (2001) Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon (Cucumis melo L. reticulatus). Mol Genet Genomics 265:135–142

    Article  PubMed  CAS  Google Scholar 

  • Kidd F, West C (1930) Physiology of fruit. I. Changes in the respiratory activity of apples during their senescence at different temperatures. Proc R Soc Lond B106:93–109

    Article  CAS  Google Scholar 

  • Klee HJ (2002) Control of ethylene-mediated processes in tomato at the level of receptors. J Exp Bot 53:2057–2063

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kato-Emori S, Tomita K, Ezura H (2002) Detection of 3-hydroxy-3-methylglutaryl coenzyme A reductase protein Cm-HMGR during fruit development in melon (Cucumis melo L.). Theor Appl Genet 104:779–785

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi T, Kato-Emori S, Tomita K, Ezura H (2003) Transformation of tomato with the melon 3-hydroxy-3-methylglutaryl coenzyme A reductase leads to increase of fruit size. Plant Biotechnol 20:297–303

    CAS  Google Scholar 

  • Kondorosi E, Roudier F, Gendreau E (2000) Plant cell-size control: growing by ploidy? Curr Opin Plant Biol 3:488–492

    Article  PubMed  CAS  Google Scholar 

  • Kopp LE (1966) A taxonomic revision of the genus Persea in the western hemisphere (Perseae-Lauraceae). Mem NY Bot Gard 14:1–120

    Google Scholar 

  • Ku HM, Grandillo G, Tanksley SD (2000) fs8.1, a major QTL, sets the pattern of tomato carpel shape well before anthesis. Theor Appl Genet 101:873–878

    Article  CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication. J Exp Bot 52:183–192

    Article  PubMed  CAS  Google Scholar 

  • Leliévre JM, Latché A, Jones B, Bouzayen M, Pech JC (1997) Ethylene and fruit ripening. Physiol Plant 101:727–739

    Article  Google Scholar 

  • Liu J, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Luckwill LC (1959) Fruit growth in relation to external and internal chemical stimuli. In: Rudnick D (ed) Cell, organism and milieu. Ronald Press, New York, pp 223–251

    Google Scholar 

  • Luo M, Wang YH, Frisch D, Joobeur T, Wing RA, Dean DA (2001) Melon bacterial artificial chromosome (BAC) library construction using improved methods and identification of clones linked to the locus conferring resistance to melon Fusarium wilt (Fom-2). Genome 44:154–162

    Article  PubMed  CAS  Google Scholar 

  • Matsukura C, Aoki K, Fukuda N, Mizoguchi T, Asamizu E, Saito T, Shibata D, Ezura H (2008) Comprehensive resources for tomato functional genomics based on the miniature model tomato Micro-Tom. Curr Genomics 9:436–443

    Article  PubMed  CAS  Google Scholar 

  • Mazzucato A, Olimpieri I, Ciampolini F, Cresti M, Soressi GP (2003) A defective pollen-pistil interaction contributes to hamper seed set in the parthenocarpic fruit tomato mutant. Sex Plant Reprod 16:157–164

    Article  Google Scholar 

  • McQueen-Mason S, Cosgrove DJ (1995) Expansin mode of action on cell walls: analysis of wall hydrolysis, stress relaxation, and binding. Plant Physiol 107:87–100

    PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Durachko DM, Cosgrove DJ (1992) Two endogenous proteins that induce cell wall extension in plants. Plant Cell 4:1425–1433

    Article  PubMed  CAS  Google Scholar 

  • McQueen-Mason S, Fry SC, Durachko DM, Cosgrove DJ (1993) The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. Planta 190:327–331

    Article  PubMed  CAS  Google Scholar 

  • Nieto C, Piron F, Dalmais M, Marco CF, Moriones E, Gomez-Guillamon ML, Truniger V, Gomez P, Garcia-Mas J, Aranda MA, Bendahmane A (2007) EcoTILLING for the identification of allelic variants of melon eIF4E, a factor that controls virus susceptibility. BMC Plant Biol 7:34. doi:10.1186/1471-2229-7-34

    Article  PubMed  Google Scholar 

  • Nitsch JP (1950) Growth and morphogenesis of the strawberry as related to auxin. Am J Bot 37:211–215

    Article  CAS  Google Scholar 

  • Nonaka S, Sugawara M, Minamisawa K, Yuhashi KI, Ezura H (2008a) 1-Aminocyclopropane-1-carboxylate deaminase-producing Agrobacterium confers higher ability for gene transfer into plant cells. Appl Environ Microbiol 74:2526–2528

    Article  CAS  Google Scholar 

  • Nonaka S, Yuhashi K, Takada K, Sugawara M, Minamisawa K, Ezura H (2008b) Ethylene production in plants during gene transformation suppresses vir gene expression in Agrobacterium tumefaciens. New Phytol 178:647–656

    Article  CAS  Google Scholar 

  • Nuez F, Costa J, Cuartero J (1986) Genetics of the parthenocarpy for tomato varieties ‘Sub-Arctic Plenty’, ‘75/59’ and ‘Severianin’. Z Pflanzenzücht 96:200–206

    Google Scholar 

  • Omura T, Watanabe S, Iijima Y, Aoki K, Shibata D, Ezura H (2007) Molecular and genetic characterization of transgenic tomato expressing 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Biotechnol 24:107–116

    Google Scholar 

  • Pech JC, Bouzayen M, Latché A (2008) Climacteric fruit ripening: ethylene-dependent and independent regulation of ripening pathways in melon fruit. Plant Sci 175:114–120

    Article  CAS  Google Scholar 

  • Philouze J, Maisonneuve B (1978) Heredity of the natural ability to set parthenocarpic fruits in the Soviet variety Severianin. Tomato Genet Coop Rep 28:12–13

    Google Scholar 

  • Purvis AC, Barmore CR (1981) Involvement of ethylene in chlorophyll degradation in peel of citrus fruit. Plant Physiol 68:854–856

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Hadfield KA, Labavitch JM, Bennett AB (1998) Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol 117:345–361

    Article  PubMed  CAS  Google Scholar 

  • Rotino GL, Perri E, Zottini M, Sommer H (1997) Genetic engineering of parthenocarpic plants. Nature Biotechnol 15:1398–1401

    Article  CAS  Google Scholar 

  • Schijlen EGWM, Ric de Vos CH, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007) RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144:1520–1530

    Article  PubMed  CAS  Google Scholar 

  • Stewart I, Wheaton TA (1972) Carotenoids in citrus: their accumulation induced by ethylene. J Agric Food Chem 20:448–449

    Article  CAS  Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol 6:544–553

    Article  PubMed  CAS  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar of tomato functional genomics. Plant Cell Physiol 47: 426–431

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  PubMed  CAS  Google Scholar 

  • van der Knaap E, Tanksley SD (2001) Identification and characterization of a novel locus controlling early fruit development in tomato. Theor Appl Genet 103:353–358

    Article  Google Scholar 

  • van der Knapp E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104:241–247

    Article  Google Scholar 

  • van Leeuwen H, Monfort A, Zhang HB, Puigdomenech P (2003) Identification and characterisation of a melon genomic region containing a resistance gene cluster from a constructed BAC library. Microcolinearity between Cucumis melo and Arabidopsis thaliana. Plant Mol Biol 51:703–718

    Article  PubMed  Google Scholar 

  • Varoquaux F, Blanvillain R, Delseny M, Gallois P (2000) Less is better; new approaches for seedless fruit production. Trends Biotechnol 18:233–242

    Article  PubMed  CAS  Google Scholar 

  • Wakabayashi K (2000) Changes in cell wall polysaccharides during fruit ripening. J Plant Res 113:231–237

    Article  CAS  Google Scholar 

  • Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech J-C, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAAg is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  PubMed  CAS  Google Scholar 

  • Yang SF, Hoffman NE (1984) Ethylene biosynthesis and its regulation in higher plants. Annu Rev Plant Physiol 35:155–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ezura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ezura, H., Hiwasa-Tanase, K. (2010). Fruit Development. In: Pua, E., Davey, M. (eds) Plant Developmental Biology - Biotechnological Perspectives. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02301-9_15

Download citation

Publish with us

Policies and ethics