Skip to main content

The Thermodynamics of Quarks and Gluons

  • Chapter
  • First Online:
The Physics of the Quark-Gluon Plasma

Part of the book series: Lecture Notes in Physics ((LNP,volume 785))

Abstract

This is an introduction to the study of strongly interacting matter. We survey its different possible states and discuss the transition from hadronic matter to a plasma of deconfined quarks and gluons. Following this, we summarize the results provided by lattice QCD finite temperature and density and then investigate the nature of the deconfinement transition. Finally we give a schematic overview of possible ways to study the properties of the quark–gluon plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. I. Ya. Pomeranchuk: Doklady Akad. Nauk. SSSR 78 (1951)

    Google Scholar 

  2. R. Hagedorn: Nuovo Cim. Suppl. 3, 147 (1965)

    Google Scholar 

  3. R. Hagedorn: Nuovo Cim. 56A, 1027 (1968)

    Article  ADS  Google Scholar 

  4. K. Bardakci and S. Mandelstam: Phys. Rev. 184, 1640 (1969)

    Article  ADS  Google Scholar 

  5. S. Fubini and G. Veneziano: Nuovo Cim. 64A, 811 (1969)

    Article  ADS  Google Scholar 

  6. N. Cabbibbo and G. Parisi: Phys. Lett. 59B, 67 (1975)

    ADS  Google Scholar 

  7. H. Satz: Fortschr. Phys. 33, 259 (1985)

    Article  Google Scholar 

  8. M. Asakawa and T. Hatsuda: Nucl. Phys. A 610, 470c (1996)

    ADS  Google Scholar 

  9. K. Wilson: Phys. Rev. D 10, 2445 (1974)

    ADS  Google Scholar 

  10. M. Creutz: Phys. Rev. D 21, 2308 (1980)

    MathSciNet  ADS  Google Scholar 

  11. I. Montvay and G. Münster: Quantum Fields on a Lattice, Cambridge University Press, Cambridge (1994) (for textbooks, surveys and further literature)

    Google Scholar 

  12. H.J. Rothe: Lattice Gauge Theory, Lecture Notes in Physics, vol. 59. World Scienfic, Singapore (1997) (for textbooks, surveys and further literature)

    Google Scholar 

  13. F. Karsch: Lattice QCD at High Temperature and Density. In: W. Plessas and L. Mathelitsch (eds.) Lecture Notes in Physics, vol. 583, pp. 209–249, Springer, Berlin Heidelberg New York (2002) (for textbooks, surveys and further literature)

    Google Scholar 

  14. F. Karsch and E. Laermann: Thermodynamics and In-Medium Hadron Properties from Lattice QCD. In: R.C. Hwa and X.-N. Wang (eds.) Quark-Gluon Plasma 3, pp. 1–59, World Scientific, Singapore (2004) (for textbooks, surveys and further literature)

    Google Scholar 

  15. F. Karsch: arXiv[hep-lat] 0711.0661 and 0711.0656 (for textbooks, surveys and further literature)

    Google Scholar 

  16. L.D. McLerran and B. Svetitsky: Phys. Lett. 98B, 195 (1981)

    MathSciNet  ADS  Google Scholar 

  17. L.D. McLerran and B. Svetitsky: Phys. Rev. D 24, 450 (1981)

    ADS  Google Scholar 

  18. J. Kuti, J. Polónyi and K. Szlachányi: Phys. Lett. 98B, 199 (1981)

    ADS  Google Scholar 

  19. B. Svetitsky and L.G. Yaffe: Nucl. Phys. B 210 [FS6], 423 (1982)

    Article  ADS  Google Scholar 

  20. F. Karsch and E. Laermann: Phys. Rev. D 50, 6954 (1994)

    ADS  Google Scholar 

  21. J. Engels et al.: Phys. Lett. 101B, 89 (1981)

    ADS  Google Scholar 

  22. J. Engels et al.: Nucl. Phys. B 205, 545 (1982)

    Article  ADS  Google Scholar 

  23. F. Karsch, E. Laermann and A. Peikert: Phys. Lett. B 478, 447 (2000)

    ADS  Google Scholar 

  24. J. Engels et al.: Z. Phys. C 42, 341 (1989)

    Google Scholar 

  25. E. Shuryak and I. Zahed: Phys. Rev. C 70, 021901 (2004)

    ADS  Google Scholar 

  26. J. Engels et al.: Z. Phys. C 42, 341 (1989)

    Google Scholar 

  27. V. Goloviznin and H. Satz: Z. Phys. C 57, 671 (1993)

    ADS  Google Scholar 

  28. F. Karsch, A. Patkos and P. Petreczky: Phys. Lett. B 401, 69 (1997)

    ADS  Google Scholar 

  29. C. Aubin et al. [MILC Collaboration]: Phys. Rev. D 70, 094505 (2004)

    ADS  Google Scholar 

  30. A. Gray et al.: Phys. Rev. D 72, 0894507 (2005)

    Google Scholar 

  31. M. Cheng et al.: arXiv:hep-lat/0608013

    Google Scholar 

  32. Z. Fodor and S. Katz: JHEP 0203, 014 (2002)

    Article  ADS  Google Scholar 

  33. M.-P. Lombardo: Phys. Rev. D 67, 014505 (2003)

    ADS  Google Scholar 

  34. C.R. Allton et al.: Phys. Rev. D 68, 014507 (2003)

    ADS  Google Scholar 

  35. G. Baym: Physica 96A, 131 (1979)

    ADS  Google Scholar 

  36. T. Çelik, F. Karsch and H. Satz: Phys. Lett. 97B, 128 (1980)

    ADS  Google Scholar 

  37. H. Satz: Nucl. Phys. A 642, 130c (1998)

    ADS  Google Scholar 

  38. D. Stauffer and A. Aharony: Introduction to Percolation Theory Taylor and Francis, London (1994)

    Google Scholar 

  39. C.M. Fortuin and P.W. Kasteleyn: J. Physical Soc. Japan 26(Suppl.), 11 (1969)

    Google Scholar 

  40. C.M. Fortuin and P.W. Kasteleyn: Physica 57, 536 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  41. J. Cleymans and H. Satz: Z. Phys. C 57, 135 (1993)

    ADS  Google Scholar 

  42. K. Redlich et al.: Nucl. Phys. A 566, 391 (1994)

    ADS  Google Scholar 

  43. P. Braun-Munzinger et al.: Phys. Lett. B 344, 43 (1995)

    ADS  Google Scholar 

  44. F. Becattini: Z. Phys. C 69, 485 (1996)

    Google Scholar 

  45. F. Becattini and U. Heinz: Z. Phys. C 76, 268 (1997)

    Google Scholar 

  46. L.D. Landau: Izv. Akad. Nauk Ser. Fiz. 17, 51 (1953)

    Google Scholar 

  47. J.-P. Blaizot and J.-Y. Ollitrault: Title. In: R.C. Hwa (ed.) Quark-Gluon Plasma 2, World Scientific, Singapore (1990)

    Google Scholar 

  48. U. Heinz, P.F. Kolb and J. Sollfrank, Phys. Rev. C 62, 054909 (2000)

    ADS  Google Scholar 

  49. E.V. Shuryak: Phys. Rep. 61, 71 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  50. K. Kajantie and H.I. Miettinen: Z. Phys. C 9, 341 (1981)

    ADS  Google Scholar 

  51. S. Datta et al.: Phys. Rev. D 69, 094507 (2004)

    ADS  Google Scholar 

  52. G. Aarts et al.: Phys. Rev. D 67, 0945413 (2007) (literature given there)

    Google Scholar 

  53. T. Matsui and H. Satz: Phys. Lett. B 178, 416 (1986)

    ADS  Google Scholar 

  54. F. Karsch and H. Satz: Z. Phys. C 51, 209 (1991)

    Google Scholar 

  55. J.D. Bjorken: Fermilab-Pub-82/59-THY (1982) (Erratum)

    Google Scholar 

  56. M. Gyulassy and X.-N. Wang: Nucl. Phys. B 420, 583 (1994)

    Article  ADS  Google Scholar 

  57. R. Baier et al.: Phys. Lett. B 345, 277 (1995)

    ADS  Google Scholar 

  58. B.G. Zakharov: JETP Lett. 63, 952 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Satz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Satz, H. (2009). The Thermodynamics of Quarks and Gluons. In: Sarkar, S., Satz, H., Sinha, B. (eds) The Physics of the Quark-Gluon Plasma. Lecture Notes in Physics, vol 785. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02286-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02286-9_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02285-2

  • Online ISBN: 978-3-642-02286-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics