Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5601))

  • 931 Accesses

Abstract

Rehabilitation of sensory and/or motor functions in patients with neurological diseases is more and more dealing with artificial electrical stimulation and recording from populations of neurons using biocompatible chronic implants. For example deep brain stimulators have been implanted successfully in patients for pain management and for control of motor disorders such as Parkinson’s disease. Moreover advances in artificial limbs and brain-machine interfaces are now providing hope of increased mobility and independence for amputees and paralysed patients. As more and more patients have benefited from these approaches, the interest in neural interfaces has grown significantly. However many problems have to be solved before a neuroprosthesis can be considered a viable clinical therapy or option. We discuss some of the exciting opportunities and challenges that lie in this intersection of neuroscience research, bioengineering and information and communication technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stieglitz, T., Schuettler, M., Koch, K.P.: Neural prostheses in clinical applications–trends from precision mechanics towards biomedical microsystems in neurological rehabilitation. Biomed. Tech. (Berl) 49(4), 72–77 (2004)

    Article  Google Scholar 

  2. Fernandez, E., et al.: Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural Eng. 2(4), R1–R12 (2005)

    Article  Google Scholar 

  3. Wolpaw, J.R., et al.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  4. Hochberg, L.R., et al.: Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099), 164–171 (2006)

    Article  Google Scholar 

  5. Loeb, G.E.: Neural prosthetic interfaces with the nervous system. Trends Neurosci. 12(5), 195–201 (1989)

    Article  Google Scholar 

  6. Sanguineti, V., et al.: Neuro-Engineering: from neural interfaces to biological computers. In: Riva, R., Davide, F. (eds.) Communications Through Virtual Technology: Identity Community and Technology in the Internet Age, pp. 233–246. IOS Press, Amsterdam (2001)

    Google Scholar 

  7. Fernandez, E., et al.: Population coding in spike trains of simultaneously recorded retinal ganglion cells. Brain Res. 887(1), 222–229 (2000)

    Article  Google Scholar 

  8. Nicolelis, M.A., Ribeiro, S.: Multielectrode recordings: the next steps. Curr. Opin. Neurobiol. 12(5), 602–606 (2002)

    Article  Google Scholar 

  9. Nicolelis, M.A.: Brain-machine interfaces to restore motor function and probe neural circuits. Nat. Rev. Neurosci. 4(5), 417–422 (2003)

    Article  Google Scholar 

  10. Normann, R.A., et al.: A neural interface for a cortical vision prosthesis. Vision Res. 39(15), 2577–2587 (1999)

    Article  Google Scholar 

  11. Carmena, J.M., et al.: Stable ensemble performance with single-neuron variability during reaching movements in primates. J. Neurosci. 25(46), 10712–10716 (2005)

    Article  Google Scholar 

  12. Nicolelis, M.A.: Computing with thalamocortical ensembles during different behavioural states. J. Physiol. 566(Pt 1), 37–47 (2005)

    Article  Google Scholar 

  13. Musallam, S., et al.: A floating metal microelectrode array for chronic implantation. J. Neurosci. Methods 160(1), 122–127 (2007)

    Article  Google Scholar 

  14. Normann, R.A.: Technology insight: future neuroprosthetic therapies for disorders of the nervous system. Nat. Clin. Pract. Neurol. 3(8), 444–452 (2007)

    Article  Google Scholar 

  15. Seymour, J.P., Kipke, D.R.: Neural probe design for reduced tissue encapsulation in CNS. Biomaterials 28(25), 3594–3607 (2007)

    Article  Google Scholar 

  16. McCreery, D., Agnew, W.F., Bullara, L.: The effects of prolonged intracortical microstimulation on the excitability of pyramidal tract neurons in the cat. Ann. Biomed. Eng. 30, 107–119 (2002)

    Article  Google Scholar 

  17. Heiduschka, P., Thanos, S.: Implantable bioelectronic interfaces for lost nerve functions. Prog. Neurobiol. 55, 433–461 (1998)

    Article  Google Scholar 

  18. Williams, D.F.: On the mechanisms of biocompatibility. Biomaterials 29(20), 2941–2953 (2008)

    Article  Google Scholar 

  19. Williams, D.: Revisiting the definition of biocompatibility. Med. Device Technol. 14(8), 10–13 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fernández, E. (2009). Neural Prosthetic Interfaces with the Central Nervous System: Current Status and Future Prospects. In: Mira, J., Ferrández, J.M., Álvarez, J.R., de la Paz, F., Toledo, F.J. (eds) Methods and Models in Artificial and Natural Computation. A Homage to Professor Mira’s Scientific Legacy. IWINAC 2009. Lecture Notes in Computer Science, vol 5601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02264-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02264-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02263-0

  • Online ISBN: 978-3-642-02264-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics