Skip to main content

Implications of Nef: Host Cell Interactions in Viral Persistence and Progression to AIDS

  • Chapter
  • First Online:
HIV Interactions with Host Cell Proteins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 339))

Abstract

The HIV and SIV Nef accessory proteins are potent enhancers of viral persistence and accelerate progression to AIDS in HIV-1-infected patients and non-human primate models. Although relatively small (27–35 kD), Nef can interact with a multitude of cellular factors and induce complex changes in trafficking, signal transduction, and gene expression that together converge to promote viral replication and immune evasion. In particular, Nef recruits several immunologically relevant cellular receptors to the endocytic machinery to reduce the recognition and elimination of virally infected cells by the host immune system, while simultaneously interacting with various kinases to promote T cell activation and viral replication. This review provides an overview on selected Nef interactions with host cell proteins, and discusses their possible relevance for viral spread and pathogenicity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adnan S, Balamurugan A, Trocha A et al (2006) Nef interference with HIV-1-specific CTL antiviral activity is epitope specific. Blood 108:3414–3419

    PubMed  CAS  Google Scholar 

  • Agopian K, Wei BL, Garcia JV et al (2006) A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 80:3050–3061

    PubMed  CAS  Google Scholar 

  • Aiken C, Trono D (1995) Nef stimulates human immunodeficiency virus type 1 proviral DNA synthesis. J Virol 69:5048–5056

    PubMed  CAS  Google Scholar 

  • Aiken C, Konner J, Landau NR et al (1994) Nef induces CD4 endocytosis: requirement for a critical dileucine motif in the membrane-proximal CD4 cytoplasmic domain. Cell 76:853–864

    PubMed  CAS  Google Scholar 

  • Akari H, Arold S, Fukumori T et al (2000) Nef-induced major histocompatibility complex class I down-regulation is functionally dissociated from its virion incorporation, enhancement of viral infectivity, and CD4 down-regulation. J Virol 74:2907–2912

    PubMed  CAS  Google Scholar 

  • Alessandrini L, Santarcangelo AC, Olivetta E et al (2000) T-tropic human immunodeficiency virus (HIV) type 1 Nef protein enters human monocyte-macrophages and induces resistance to HIV replication: a possible mechanism of HIV T-tropic emergence in AIDS. J Gen Virol 81:2905–2917

    PubMed  CAS  Google Scholar 

  • Arendt CW, Littman DR (2001) HIV: master of the host cell. Genome Biol 2:Reviews1030

    Google Scholar 

  • Arganaraz ER, Schindler M, Kirchhoff F et al (2003) Enhanced CD4 down-modulation by late stage HIV-1 nef alleles is associated with increased Env incorporation and viral replication. J Biol Chem 278:33912–33919

    PubMed  CAS  Google Scholar 

  • Atkins KM, Thomas L, Youker RT et al (2008) HIV-1 Nef binds PACS-2 to assemble a multikinase cascade that triggers major histocompatibility complex class I (MHC-I) down-regulation: analysis using short interfering RNA and knock-out mice. J Biol Chem 283:11772–11784

    PubMed  CAS  Google Scholar 

  • Baur AS, Sass G, Laffert B et al (1997) The N-terminus of Nef from HIV-1/SIV associates with a protein complex containing Lck and a serine kinase. Immunity 6:283–291

    PubMed  CAS  Google Scholar 

  • Baur AS, Sawai ET, Dazin P et al (1994) HIV-1 Nef leads to inhibition or activation of T cells depending on its intracellular localization. Immunity 1:373–384

    PubMed  CAS  Google Scholar 

  • Bell I, Schaefer TM, Trible RP et al (2001) Down-modulation of the costimulatory molecule, CD28, is a conserved activity of multiple SIV Nefs and is dependent on histidine 196 of Nef. Virology 283:148–158

    PubMed  CAS  Google Scholar 

  • Bell I, Ashman C, Maughan J et al (1998) Association of simian immunodeficiency virus Nef with the T-cell receptor (TCR) zeta chain leads to TCR down-modulation. J Gen Virol 79:2717–2727

    PubMed  CAS  Google Scholar 

  • Benson RE, Sanfridson A, Ottinger JS et al (1993) Downregulation of cell-surface CD4 expression by simian immunodeficiency virus Nef prevents viral super infection. J Exp Med 177:1561–1566

    PubMed  CAS  Google Scholar 

  • Bertolino P, Rabourdin-Combe C (1996) The MHC class II-associated invariant chain: a molecule with multiple roles in MHC class II biosynthesis and antigen presentation to CD4+ T cells. Crit Rev Immunol 16:359–379

    PubMed  CAS  Google Scholar 

  • Blagoveshchenskaya AD, Thomas L, Feliciangeli SF et al (2002) HIV-1 Nef downregulates MHC-I by a PACS-1- and PI3K-regulated ARF6 endocytic pathway. Cell 111:853–866

    PubMed  CAS  Google Scholar 

  • Bonaparte MI, Barker E (2003) Inability of natural killer cells to destroy autologous HIV-infected T lymphocytes. AIDS 17:487–494

    PubMed  Google Scholar 

  • Bonaparte MI, Barker E (2004) Killing of human immunodeficiency virus-infected primary T-cell blasts by autologous natural killer cells is dependent on the ability of the virus to alter the expression of major histocompatibility complex class I molecules. Blood 104:2087–2094

    PubMed  CAS  Google Scholar 

  • Brenchley JM, Price DA, Schacker TW et al (2006) Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat Med 12:1365–1371

    PubMed  CAS  Google Scholar 

  • Brenner M, Munch J, Schindler M et al (2006) Importance of the N-distal AP-2 binding element in Nef for simian immunodeficiency virus replication and pathogenicity in rhesus macaques. J Virol 80:4469–4481

    PubMed  CAS  Google Scholar 

  • Bresnahan PA, Yonemoto W, Greene WC (1999) Cutting edge: SIV Nef protein utilizes both leucine- and tyrosine-based protein sorting pathways for down-regulation of CD4. J Immunol 163:2977–2981

    PubMed  CAS  Google Scholar 

  • Campbell EM, Nunez R, Hope TJ (2004) Disruption of the actin cytoskeleton can complement the ability of Nef to enhance human immunodeficiency virus type 1 infectivity. J Virol 78:5745–5755

    PubMed  CAS  Google Scholar 

  • Carl S, Greenough TC, Krumbiegel M et al (2001) Modulation of different human immunodeficiency virus type 1 Nef functions during progression to AIDS. J Virol 75:3657–3665

    PubMed  CAS  Google Scholar 

  • Casartelli N, Di MG, Potesta M et al (2003) CD4 and major histocompatibility complex class I downregulation by the human immunodeficiency virus type 1 nef protein in pediatric AIDS progression. J Virol 77:11536–11545

    PubMed  CAS  Google Scholar 

  • Cavrois M, Neidleman J, Yonemoto W et al (2004) HIV-1 virion fusion assay: uncoating not required and no effect of Nef on fusion. Virology 328:36–44

    PubMed  CAS  Google Scholar 

  • Chaudhry A, Das SR, Jameel S et al (2008) HIV-1 Nef induces a Rab11-dependent routing of endocytosed immune costimulatory proteins CD80 and CD86 to the Golgi. Traffic 9:1925–1935

    PubMed  CAS  Google Scholar 

  • Chaudhry A, Das SR, Jameel S et al (2007) A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe 1:37–49

    PubMed  CAS  Google Scholar 

  • Chaudhry A, Das SR, Hussain A et al (2005) The Nef protein of HIV-1 induces loss of cell surface costimulatory molecules CD80 and CD86 in APCs. J Immunol 175:4566–4574

    PubMed  CAS  Google Scholar 

  • Chazal N, Singer G, Aiken C et al (2001) Human immunodeficiency virus type 1 particles pseudotyped with envelope proteins that fuse at low pH no longer require Nef for optimal infectivity. J Virol 75:4014–4018

    PubMed  CAS  Google Scholar 

  • Chen YL, Trono D, Camaur D (1998) The proteolytic cleavage of human immunodeficiency virus type 1 Nef does not correlate with its ability to stimulate virion infectivity. J Virol 72:3178–3184

    PubMed  CAS  Google Scholar 

  • Choe EY, Schoenberger ES, Groopman JE et al (2002) HIV Nef inhibits T cell migration. J Biol Chem 277:46079–46084

    PubMed  CAS  Google Scholar 

  • Chowers MY, Pandori MW, Spina CA et al (1995) The growth advantage conferred by HIV-1 nef is determined at the level of viral DNA formation and is independent of CD4 downregulation. Virology 212:451–457

    PubMed  CAS  Google Scholar 

  • Chowers MY, Spina CA, Kwoh TJ et al (1994) Optimal infectivity in vitro of human immunodeficiency virus type 1 requires an intact nef gene. J Virol 68:2906–2914

    PubMed  CAS  Google Scholar 

  • Chu PC, Wu J, Liao XC et al (2004) A novel role for p21-activated protein kinase 2 in T cell activation. J Immunol 172:7324–7334

    PubMed  CAS  Google Scholar 

  • Cohen GB, Gandhi RT, Davis DM et al (1999) The selective downregulation of class I major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity 10:661–671

    PubMed  CAS  Google Scholar 

  • Collette Y, Dutartre H, Benziane A et al (1996) Physical and functional interaction of Nef with Lck. HIV-1 Nef-induced T-cell signaling defects. J Biol Chem 271:6333–6341

    PubMed  CAS  Google Scholar 

  • Collins KL, Chen BK, Kalams SA et al (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391:397–401

    PubMed  CAS  Google Scholar 

  • Cortes MJ, Wong-Staal F, Lama J (2002) Cell surface CD4 interferes with the infectivity of HIV-1 particles released from T cells. J Biol Chem 277:1770–1779

    PubMed  CAS  Google Scholar 

  • Craig HM, Pandori MW, Guatelli JC (1998) Interaction of HIV-1 Nef with the cellular dileucine-based sorting pathway is required for CD4 down-regulation and optimal viral infectivity. Proc Natl Acad Sci U S A 95:11229–11234

    PubMed  CAS  Google Scholar 

  • Daniels RH, Bokoch GM (1999) p21-activated protein kinase: a crucial component of morphological signaling? Trends Biochem Sci 24:350–355

    PubMed  CAS  Google Scholar 

  • Deacon NJ, Tsykin A, Solomon A et al (1995) Genomic structure of an attenuated quasi species of HIV-1 from a blood transfusion donor and recipients. Science 270:988–991

    PubMed  CAS  Google Scholar 

  • Deng H, Liu R, Ellmeier W et al (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    PubMed  CAS  Google Scholar 

  • Djordjevic JT, Schibeci SD, Stewart GJ et al (2004) HIV type 1 Nef increases the association of T cell receptor (TCR)-signaling molecules with T cell rafts and promotes activation-induced raft fusion. AIDS Res Hum Retroviruses 20:547–555

    PubMed  CAS  Google Scholar 

  • Du Z, Lang SM, Sasseville VG et al (1995) Identification of a nef allele that causes lymphocyte activation and acute disease in macaque monkeys. Cell 82:665–674

    PubMed  CAS  Google Scholar 

  • Dugast M, Toussaint H, Dousset C et al (2005) AP2 clathrin adaptor complex, but not AP1, controls the access of the major histocompatibility complex (MHC) class II to endosomes. J Biol Chem 280:19656–19664

    PubMed  CAS  Google Scholar 

  • Dyer WB, Ogg GS, Demoitie MA et al (1999) Strong human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte activity in Sydney Blood Bank Cohort patients infected with nef-defective HIV type 1. J Virol 73:436–443

    PubMed  CAS  Google Scholar 

  • Fackler OT, Alcover A, Schwartz O (2007) Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 7:310–317

    PubMed  CAS  Google Scholar 

  • Fackler OT, Baur AS (2002) Live and let die: Nef functions beyond HIV replication. Immunity 16:493–497

    PubMed  CAS  Google Scholar 

  • Fackler OT, Lu X, Frost JA et al (2000) p21-activated kinase 1 plays a critical role in cellular activation by Nef. Mol Cell Biol 20:2619–2627

    PubMed  CAS  Google Scholar 

  • Fackler OT, Luo W, Geyer M et al (1999) Activation of Vav by Nef induces cytoskeletal rearrangements and downstream effector functions. Mol Cell 3:729–739

    PubMed  CAS  Google Scholar 

  • Fellay J, Shianna KV, Ge D et al (2007) A whole-genome association study of major determinants for host control of HIV-1. Science 317:944–947

    PubMed  CAS  Google Scholar 

  • Fenard D, Yonemoto W, de Noronha C et al (2005) Nef is physically recruited into the immunological synapse and potentiates T cell activation early after TCR engagement. J Immunol 175:6050–6057

    PubMed  CAS  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE et al (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    PubMed  CAS  Google Scholar 

  • Fortin JF, Barat C, Beausejour Y et al (2004) Hyper-responsiveness to stimulation of human immunodeficiency virus-infected CD4+ T cells requires Nef and Tat virus gene products and results from higher NFAT, NF-kappaB, and AP-1 induction. J Biol Chem 279:39520–39531

    PubMed  CAS  Google Scholar 

  • Foti M, Mangasarian A, Piguet V et al (1997) Nef-mediated clathrin-coated pit formation. J Cell Biol 139:37–47

    PubMed  CAS  Google Scholar 

  • Fujii Y, Otake K, Tashiro M et al (1996) Soluble Nef antigen of HIV-1 is cytotoxic for human CD4+ T cells. FEBS Lett 393:93–96

    PubMed  CAS  Google Scholar 

  • Garcia JV, Miller AD (1991) Serine phosphorylation-independent downregulation of cell-surface CD4 by nef. Nature 350:508–511

    PubMed  CAS  Google Scholar 

  • Geijtenbeek TB, Kwon DS, Torensma R et al (2000) DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597

    PubMed  CAS  Google Scholar 

  • Geleziunas R, Xu W, Takeda K et al (2001) HIV-1 Nef inhibits ASK1-dependent death signalling providing a potential mechanism for protecting the infected host cell. Nature 410:834–838

    PubMed  CAS  Google Scholar 

  • Geyer M, Fackler OT, Peterlin BM (2001) Structure–function relationships in HIV-1 Nef. EMBO Rep 2:580–585

    PubMed  CAS  Google Scholar 

  • Geyer M, Peterlin BM (2001) Domain assembly, surface accessibility and sequence conservation in full length HIV-1 Nef. FEBS Lett 496:91–95

    PubMed  CAS  Google Scholar 

  • Glushakova S, Munch J, Carl S et al (2001) CD4 down-modulation by human immunodeficiency virus type 1 Nef correlates with the efficiency of viral replication and with CD4(+) T-cell depletion in human lymphoid tissue ex vivo. J Virol 75:10113–10117

    PubMed  CAS  Google Scholar 

  • Gordon S, Klatt NR, Bosinger SE et al (2007) Severe depletion of mucosal CD4+ T cells in AIDS-free SIV-infected sooty mangabeys. J Immunol 179:3026–3034

    PubMed  CAS  Google Scholar 

  • Gougeon ML (2003) Apoptosis as an HIV strategy to escape immune attack. Nat Rev Immunol 3:392–404

    PubMed  CAS  Google Scholar 

  • Goulder PJ, Bunce M, Luzzi G et al (1997) Potential underestimation of HLA-C-restricted cytotoxic T-lymphocyte responses. AIDS 11:1884–1886

    PubMed  CAS  Google Scholar 

  • Granelli-Piperno A, Finkel V, Delgado E et al (1999) Virus replication begins in dendritic cells during the transmission of HIV-1 from mature dendritic cells to T cells. Curr Biol 9:21–29

    PubMed  CAS  Google Scholar 

  • Greenberg ME, Iafrate AJ, Skowronski J (1998a) The SH3 domain-binding surface and an acidic motif in HIV-1 Nef regulate trafficking of class I MHC complexes. EMBO J 17:2777–2789

    PubMed  CAS  Google Scholar 

  • Greenberg M, DeTulleo L, Rapoport I et al (1998b) A dileucine motif in HIV-1 Nef is essential for sorting into clathrin-coated pits and for downregulation of CD4. Curr Biol 8:1239–1242

    PubMed  CAS  Google Scholar 

  • Greenway AL, Holloway G, McPhee DA et al (2003) HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 28:323–335

    PubMed  CAS  Google Scholar 

  • Greenway A, Azad A, Mills J et al (1996) Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J Virol 70:6701–6708

    PubMed  CAS  Google Scholar 

  • Hahn BH, Shaw GM, De Cock KM et al (2000) AIDS as a zoonosis: scientific and public health implications. Science 287:607–614

    PubMed  CAS  Google Scholar 

  • Hodge DR, Dunn KJ, Pei GK et al (1998) Binding of c-Raf1 kinase to a conserved acidic sequence within the carboxyl-terminal region of the HIV-1 Nef protein. J Biol Chem 273:15727–15733

    PubMed  CAS  Google Scholar 

  • Howe AY, Jung JU, Desrosiers RC (1998) Zeta chain of the T-cell receptor interacts with nef of simian immunodeficiency virus and human immunodeficiency virus type 2. J Virol 72:9827–9834

    PubMed  CAS  Google Scholar 

  • Hrecka K, Swigut T, Schindler M et al (2005) Nef proteins from diverse groups of primate lentiviruses downmodulate CXCR4 to inhibit migration to the chemokine stromal derived factor 1. J Virol 79:10650–10659

    PubMed  CAS  Google Scholar 

  • Hua J, Cullen BR (1997) Human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus Nef use distinct but overlapping target sites for downregulation of cell surface CD4. J Virol 71:6742–6748

    PubMed  CAS  Google Scholar 

  • Hung CH, Thomas L, Ruby CE et al (2007) HIV-1 Nef assembles a Src family kinase-ZAP-70/Syk-PI3K cascade to downregulate cell-surface MHC-I. Cell Host Microbe 1:121–133

    PubMed  CAS  Google Scholar 

  • Iafrate AJ, Bronson S, Skowronski J (1997) Separable functions of Nef disrupt two aspects of T cell receptor machinery: CD4 expression and CD3 signaling. EMBO J 16:673–684

    PubMed  CAS  Google Scholar 

  • Janardhan A, Swigut T, Hill B et al (2004) HIV-1 Nef binds the DOCK2-ELMO1 complex to activate rac and inhibit lymphocyte chemotaxis. PLoS Biol 2:E6

    PubMed  Google Scholar 

  • Jia B, Serra-Moreno R, Neidermyer W, Rahmberg A, Mackey J, Fofana IB, Johnson WE, Westmoreland S, Evans DT (2009) Species-specific activity of SIV Nef and HIV-1 Vpu in overcoming restriction by tetherin/BST2. PLoS Pathog May; 5(5):e1000429

    PubMed  Google Scholar 

  • Jin YJ, Cai CY, Zhang X et al (2008) Lysine 144, a ubiquitin attachment site in HIV-1 Nef, is required for Nef-mediated CD4 down-regulation. J Immunol 180:7878–7886

    PubMed  CAS  Google Scholar 

  • Kärkkäinen S, Hiipakka M, Wang JH et al (2006) Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep 7:186–191

    PubMed  Google Scholar 

  • Karn T, Hock B, Holtrich U et al (1998) Nef proteins of distinct HIV-1 or -2 isolates differ in their binding properties for HCK: isolation of a novel Nef binding factor with characteristics of an adaptor protein. Virology 246:45–52

    PubMed  CAS  Google Scholar 

  • Kasper MR, Collins KL (2003) Nef-mediated disruption of HLA-A2 transport to the cell surface in T cells. J Virol 77:3041–3049

    PubMed  CAS  Google Scholar 

  • Kerkau T, Schmitt-Landgraf R, Schimpl A et al (1989) Downregulation of HLA class I antigens in HIV-1-infected cells. AIDS Res Hum Retroviruses 5:613–620

    PubMed  CAS  Google Scholar 

  • Kestler HW, Ringler DJ, Mori K et al (1991) Importance of the nef gene for maintenance of high virus loads and for development of AIDS. Cell 65:651–662

    PubMed  CAS  Google Scholar 

  • Kirchhoff F (2009) Is the high virulence of HIV-1 an unfortunate coincidence of primate lentiviral evolution? Nat Rev Microbiol 7: 467–476

    PubMed  CAS  Google Scholar 

  • Kirchhoff F, Schindler M, Specht A et al (2008) Role of Nef in primate lentiviral immunopathogenesis. Cell Mol Life Sci 65:2621–2636

    PubMed  CAS  Google Scholar 

  • Kirchhoff F, Greenough TC, Brettler DB et al (1995) Brief report: absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 332:228–232

    PubMed  CAS  Google Scholar 

  • Lama J (2003) The physiological relevance of CD4 receptor down-modulation during HIV infection. Curr HIV Res 1:167–184

    PubMed  CAS  Google Scholar 

  • Lama J, Mangasarian A, Trono D (1999) Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr Biol 9:622–631

    PubMed  CAS  Google Scholar 

  • Larsen JE, Massol RH, Nieland TJ et al (2004) HIV Nef-mediated major histocompatibility complex class I down-modulation is independent of Arf6 activity. Mol Biol Cell 15:323–331

    PubMed  CAS  Google Scholar 

  • Le Gall S, Buseyne F, Trocha A et al (2000) Distinct trafficking pathways mediate Nef-induced and clathrin-dependent major histocompatibility complex class I down-regulation. J Virol 74:9256–9266

    PubMed  Google Scholar 

  • Le Gall S, Erdtmann L, Benichou S et al (1998) Nef interacts with the mu subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8:483–495

    PubMed  Google Scholar 

  • Lewis MJ, Balamurugan A, Ohno A et al (2008) Functional adaptation of Nef to the immune milieu of HIV-1 infection in vivo. J Immunol 180:4075–4081

    PubMed  CAS  Google Scholar 

  • Lindner R (2002) Transient surface delivery of invariant chain-MHC II complexes via endosomes: a quantitative study. Traffic 3:133–146

    PubMed  CAS  Google Scholar 

  • Lindwasser OW, Smith WJ, Chaudhuri R et al (2008) A diacidic motif in human immunodeficiency virus type 1 Nef is a novel determinant of binding to AP-2. J Virol 82:1166–1174

    PubMed  CAS  Google Scholar 

  • Linnemann T, Zheng YH, Mandic R et al (2002) Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-activated kinase and increased production of HIV. Virology 294:246–255

    PubMed  CAS  Google Scholar 

  • Lock M, Greenberg ME, Iafrate AJ et al (1999) Two elements target SIV Nef to the AP-2 clathrin adaptor complex, but only one is required for the induction of CD4 endocytosis. EMBO J 18:2722–2733

    PubMed  CAS  Google Scholar 

  • Lu X, Wu X, Plemenitas A et al (1996) CDC42 and Rac1 are implicated in the activation of the Nef-associated kinase and replication of HIV-1. Curr Biol 6:1677–1684

    PubMed  CAS  Google Scholar 

  • Lubben NB, Sahlender DA, Motley AM et al (2007) HIV-1 Nef-induced down-regulation of MHC class I requires AP-1 and clathrin but not PACS-1 and is impeded by AP-2. Mol Biol Cell 18:3351–3365

    PubMed  CAS  Google Scholar 

  • Lundquist CA, Tobiume M, Zhou J et al (2002) Nef-mediated downregulation of CD4 enhances human immunodeficiency virus type 1 replication in primary T lymphocytes. J Virol 76:4625–4633

    PubMed  CAS  Google Scholar 

  • Madrid R, Janvier K, Hitchin D et al (2005) Nef-induced alteration of the early/recycling endosomal compartment correlates with enhancement of HIV-1 infectivity. J Biol Chem 280:5032–5044

    PubMed  CAS  Google Scholar 

  • Malim MH, Emerman M (2008) HIV-1 accessory proteins–ensuring viral survival in a hostile environment. Cell Host Microbe 3:388–398

    PubMed  CAS  Google Scholar 

  • Mangasarian A, Piguet V, Wang JK et al (1999) Nef-induced CD4 and major histocompatibility complex class I (MHC-I) down-regulation are governed by distinct determinants: N-terminal alpha helix and proline repeat of Nef selectively regulate MHC-I trafficking. J Virol 73:1964–1973

    PubMed  CAS  Google Scholar 

  • Mangino G, Percario ZA, Fiorucci G et al (2007) In vitro treatment of human monocytes/macrophages with myristoylated recombinant Nef of human immunodeficiency virus type 1 leads to the activation of mitogen-activated protein kinases, IkappaB kinases, and interferon regulatory factor 3 and to the release of beta interferon. J Virol 81:2777–2791

    PubMed  CAS  Google Scholar 

  • Manninen A, Huotari P, Hiipakka M et al (2001) Activation of NFAT-dependent gene expression by Nef: conservation among divergent Nef alleles, dependence on SH3 binding and membrane association, and cooperation with protein kinase C-theta. J Virol 75:3034–3037

    PubMed  CAS  Google Scholar 

  • Manninen A, Renkema GH, Saksela K (2000) Synergistic activation of NFAT by HIV-1 nef and the Ras/MAPK pathway. J Biol Chem 275:16513–16517

    PubMed  CAS  Google Scholar 

  • Marandin A, Katz A, Oksenhendler E et al (1996) Loss of primitive hematopoietic progenitors in patients with human immunodeficiency virus infection. Blood 88:4568–4578

    PubMed  CAS  Google Scholar 

  • Marechal V, Clavel F, Heard JM et al (1998) Cytosolic Gag p24 as an index of productive entry of human immunodeficiency virus type 1. J Virol 72:2208–2212

    PubMed  CAS  Google Scholar 

  • Mariani R, Kirchhoff F, Greenough TC et al (1996) High frequency of defective nef alleles in a long-term survivor with nonprogressive human immunodeficiency virus type 1 infection. J Virol 70:7752–7764

    PubMed  CAS  Google Scholar 

  • Marx PA, Chen Z (1998) The function of simian chemokine receptors in the replication of SIV. Semin Immunol 10:215–223

    PubMed  CAS  Google Scholar 

  • Mavilio D, Benjamin J, Daucher M et al (2003) Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates. Proc Natl Acad Sci U S A 100:15011–15016

    PubMed  CAS  Google Scholar 

  • Miller MD, Warmerdam MT, Ferrell SS et al (1997) Intravirion generation of the C-terminal core domain of HIV-1 Nef by the HIV-1 protease is insufficient to enhance viral infectivity. Virology 234:215–225

    PubMed  CAS  Google Scholar 

  • Miller MD, Warmerdam MT, Page KA et al (1995) Expression of the human immunodeficiency virus type 1 (HIV-1) nef gene during HIV-1 production increases progeny particle infectivity independently of gp160 or viral entry. J Virol 69:579–584

    PubMed  CAS  Google Scholar 

  • Miller MD, Warmerdam MT, Gaston I et al (1994) The human immunodeficiency virus-1 nef gene product: a positive factor for viral infection and replication in primary lymphocytes and macrophages. J Exp Med 179:101–113

    PubMed  CAS  Google Scholar 

  • Milush JM, Reeves JD, Gordon SN et al (2007) Virally induced CD4+ T cell depletion is not sufficient to induce AIDS in a natural host. J Immunol 179:3047–3056

    PubMed  CAS  Google Scholar 

  • Mitchell RS, Chaudhuri R, Lindwasser OW et al (2008) Competition model for upregulation of the major histocompatibility complex class II-associated invariant chain by human immunodeficiency virus type 1 Nef. J Virol 82:7758–7767

    PubMed  CAS  Google Scholar 

  • Munch J, Rajan D, Schindler M et al (2007) Nef-mediated enhancement of virion infectivity and stimulation of viral replication are fundamental properties of primate lentiviruses. J Virol 81:13852–13864

    PubMed  Google Scholar 

  • Munch J, Stolte N, Fuchs D et al (2001) Efficient class I major histocompatibility complex down-regulation by simian immunodeficiency virus Nef is associated with a strong selective advantage in infected rhesus macaques. J Virol 75:10532–10536

    PubMed  CAS  Google Scholar 

  • Muthumani K, Choo AY, Hwang DS et al (2005) HIV-1 Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood 106:2059–2068

    PubMed  CAS  Google Scholar 

  • Ndolo T, George M, Nguyen H et al (2006) Expression of simian immunodeficiency virus Nef protein in CD4+ T cells leads to a molecular profile of viral persistence and immune evasion. Virology 353:374–387

    PubMed  CAS  Google Scholar 

  • Neil SJ, Zang T, Bieniasz PD (2008). Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature. 2008 Jan 24; 451(7177):425–430

    PubMed  CAS  Google Scholar 

  • Norris PJ, Rosenberg ES (2002) CD4(+) T helper cells and the role they play in viral control. J Mol Med 80:397–405

    PubMed  Google Scholar 

  • Noviello CM, Benichou S, Guatelli JC (2008) Cooperative binding of the class I major histocompatibility complex cytoplasmic domain and human immunodeficiency virus type 1 Nef to the endosomal AP-1 complex via its mu subunit. J Virol 82:1249–1258

    PubMed  CAS  Google Scholar 

  • Okada H, Takei R, Tashiro M (1997) HIV-1 Nef protein-induced apoptotic cytolysis of a broad spectrum of uninfected human blood cells independently of CD95(Fas). FEBS Lett 414:603–606

    PubMed  CAS  Google Scholar 

  • Olivetta E, Percario Z, Fiorucci G et al (2003) HIV-1 Nef induces the release of inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic signals and NF-kappa B activation. J Immunol 170:1716–1727

    PubMed  CAS  Google Scholar 

  • Pandori MW, Fitch NJ, Craig HM et al (1996) Producer-cell modification of human immunodeficiency virus type 1: Nef is a virion protein. J Virol 70:4283–4290

    PubMed  CAS  Google Scholar 

  • Pandrea I, Sodora DL, Silvestri G et al (2008) Into the wild: simian immunodeficiency virus (SIV) infection in natural hosts. Trends Immunol 29:419–428

    PubMed  CAS  Google Scholar 

  • Patel PG, Yu Kimata MT, Biggins JE et al (2002) Highly pathogenic simian immunodeficiency virus mne variants that emerge during the course of infection evolve enhanced infectivity and the ability to downregulate CD4 but not class I major histocompatibility complex antigens. J Virol 76:6425–6434

    PubMed  CAS  Google Scholar 

  • Petit C, Buseyne F, Boccaccio C et al (2001) Nef is required for efficient HIV-1 replication in cocultures of dendritic cells and lymphocytes. Virology 286:225–236

    PubMed  CAS  Google Scholar 

  • Pham HM, Arganaraz ER, Groschel B et al (2004) Lentiviral vectors interfering with virus-induced CD4 down-modulation potently block human immunodeficiency virus type 1 replication in primary lymphocytes. J Virol 78:13072–13081

    PubMed  CAS  Google Scholar 

  • Piguet V, Wan L, Borel C et al (2000) HIV-1 Nef protein binds to the cellular protein PACS-1 to downregulate class I major histocompatibility complexes. Nat Cell Biol 2:163–167

    PubMed  CAS  Google Scholar 

  • Piguet V, Chen YL, Mangasarian A et al (1998) Mechanism of Nef-induced CD4 endocytosis: Nef connects CD4 with the mu chain of adaptor complexes. EMBO J 17:2472–2481

    PubMed  CAS  Google Scholar 

  • Pizzato M, Popova E, Gottlinger HG (2008) Nef can enhance the infectivity of receptor-pseudotyped human immunodeficiency virus type 1 particles. J Virol 82(21):10811–10810

    PubMed  CAS  Google Scholar 

  • Pizzato M, Helander A, Popova E et al (2007) Dynamin 2 is required for the enhancement of HIV-1 infectivity by Nef. Proc Natl Acad Sci U S A 104:6812–6817

    PubMed  CAS  Google Scholar 

  • Prost S, Le DM, Auge S et al (2008) Human and simian immunodeficiency viruses deregulate early hematopoiesis through a Nef/PPARgamma/STAT5 signaling pathway in macaques. J Clin Invest 118:1765–1775

    PubMed  CAS  Google Scholar 

  • Qi M, Aiken C (2007) Selective restriction of Nef-defective human immunodeficiency virus type 1 by a proteasome-dependent mechanism. J Virol 81:1534–1536

    PubMed  CAS  Google Scholar 

  • Qiao X, He B, Chiu A et al (2006) Human immunodeficiency virus 1 Nef suppresses CD40-dependent immunoglobulin class switching in bystander B cells. Nat Immunol 7:302–310

    PubMed  CAS  Google Scholar 

  • Quaranta MG, Napolitano A, Sanchez M et al (2007) HIV-1 Nef impairs the dynamic of DC/NK crosstalk: different outcome of CD56(dim) and CD56(bright) NK cell subsets. FASEB J 21:2323–2334

    PubMed  CAS  Google Scholar 

  • Rasola A, Gramaglia D, Boccaccio C et al (2001) Apoptosis enhancement by the HIV-1 Nef protein. J Immunol 166:81–88

    PubMed  CAS  Google Scholar 

  • Rauch S, Pulkkinen K, Saksela K, Fackler OT (2008) Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 82:2918–2929

    PubMed  CAS  Google Scholar 

  • Renkema GH, Saksela K (2000) Interactions of HIV-1 NEF with cellular signal transducing proteins. Front Biosci 5:D268–D283

    PubMed  CAS  Google Scholar 

  • Rocha N, Neefjes J (2008) MHC class II molecules on the move for successful antigen presentation. EMBO J 27:1–5

    PubMed  CAS  Google Scholar 

  • Roche PA, Teletski CL, Stang E et al (1993) Cell surface HLA-DR-invariant chain complexes are targeted to endosomes by rapid internalization. Proc Natl Acad Sci U S A 90:8581–8585

    PubMed  CAS  Google Scholar 

  • Roche PA, Teletski CL, Karp DR et al (1992) Stable surface expression of invariant chain prevents peptide presentation by HLA-DR. EMBO J 11:2841–2847

    PubMed  CAS  Google Scholar 

  • Roeth JF, Collins KL (2006) Human immunodeficiency virus type 1 Nef: adapting to intracellular trafficking pathways. Microbiol Mol Biol Rev 70:548–563

    PubMed  CAS  Google Scholar 

  • Roeth JF, Williams M, Kasper MR et al (2004) HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J Cell Biol 167:903–913

    PubMed  CAS  Google Scholar 

  • Rose JJ, Janvier K, Chandrasekhar S et al (2005) CD4 down-regulation by HIV-1 and simian immunodeficiency virus (SIV) Nef proteins involves both internalization and intracellular retention mechanisms. J Biol Chem 280:7413–7426

    PubMed  CAS  Google Scholar 

  • Ross TM, Oran AE, Cullen BR (1999) Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr Biol 9:613–621

    PubMed  CAS  Google Scholar 

  • Saksela K, Cheng G, Baltimore D (1995) Proline-rich (PxxP) motifs in HIV-1 Nef bind to SH3 domains of a subset of Src kinases and are required for the enhanced growth of Nef + viruses but not for down-regulation of CD4. EMBO J 14:484–491

    PubMed  CAS  Google Scholar 

  • Salvi R, Garbuglia AR, Di CA et al (1998) Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor. J Virol 72:3646–3657

    PubMed  CAS  Google Scholar 

  • Sawai ET, Baur A, Struble H et al (1994) Human immunodeficiency virus type 1 Nef associates with a cellular serine kinase in T lymphocytes. Proc Natl Acad Sci U S A 91:1539–1543

    PubMed  CAS  Google Scholar 

  • Schaefer MR, Wonderlich ER, Roeth JF et al (2008) HIV-1 Nef targets MHC-I and CD4 for degradation via a final common beta-COP-dependent pathway in T cells. PLoS Pathog 4:e1000131

    PubMed  Google Scholar 

  • Schaefer TM, Bell I, Pfeifer ME et al (2002) The conserved process of TCR/CD3 complex down-modulation by SIV Nef is mediated by the central core, not endocytic motifs. Virology 302:106–122

    PubMed  CAS  Google Scholar 

  • Schaeffer E, Geleziunas R, Greene WC (2001) Human immunodeficiency virus type 1 Nef functions at the level of virus entry by enhancing cytoplasmic delivery of virions. J Virol 75:2993–3000

    PubMed  CAS  Google Scholar 

  • Scheppler JA, Nicholson JK, Swan DC et al (1989) Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J Immunol 143:2858–2866

    PubMed  CAS  Google Scholar 

  • Schindler M, Schmokel J, Specht A et al (2008) Inefficient Nef-mediated downmodulation of CD3 and MHC-I correlates with loss of CD4 + T cells in natural SIV infection. PLoS Pathog 4:e1000107

    PubMed  Google Scholar 

  • Schindler M, Wildum S, Casartelli N et al (2007a) Nef alleles from children with non-progressive HIV-1 infection modulate MHC-II expression more efficiently than those from rapid progressors. AIDS 21:1103–1107

    PubMed  CAS  Google Scholar 

  • Schindler M, Rajan D, Specht A et al (2007b) Association of Nef with p21-activated kinase 2 is dispensable for efficient human immunodeficiency virus type 1 replication and cytopathicity in ex vivo-infected human lymphoid tissue. J Virol 81:13005–13014

    PubMed  CAS  Google Scholar 

  • Schindler M, Munch J, Kutsch O et al (2006) Nef-mediated suppression of T cell activation was lost in a lentiviral lineage that gave rise to HIV-1. Cell 125:1055–1067

    PubMed  CAS  Google Scholar 

  • Schindler M, Munch J, Kirchhoff F (2005) Human immunodeficiency virus type 1 inhibits DNA damage-triggered apoptosis by a Nef-independent mechanism. J Virol 79:5489–5498

    PubMed  CAS  Google Scholar 

  • Schindler M, Wurfl S, Benaroch P et al (2003) Down-modulation of mature major histocompatibility complex class II and up-regulation of invariant chain cell surface expression are well-conserved functions of human and simian immunodeficiency virus nef alleles. J Virol 77:10548–10556

    PubMed  CAS  Google Scholar 

  • Schrager JA, Marsh JW (1999) HIV-1 Nef increases T cell activation in a stimulus-dependent manner. Proc Natl Acad Sci U S A 96:8167–8172

    PubMed  CAS  Google Scholar 

  • Schwartz O, Marechal V, Le Gall S et al (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–342

    PubMed  CAS  Google Scholar 

  • Schwartz O, Marechal V, Danos O et al (1995) Human immunodeficiency virus type 1 Nef increases the efficiency of reverse transcription in the infected cell. J Virol 69:4053–4059

    PubMed  CAS  Google Scholar 

  • Shaheduzzaman S, Krishnan V, Petrovic A et al (2002) Effects of HIV-1 Nef on cellular gene expression profiles. J Biomed Sci 9:82–96

    PubMed  CAS  Google Scholar 

  • Simmons A, Aluvihare V, McMichael A (2001) Nef triggers a transcriptional program in T cells imitating single-signal T cell activation and inducing HIV virulence mediators. Immunity 14:763–777

    PubMed  CAS  Google Scholar 

  • Skowronski J, Parks D, Mariani R (1993) Altered T cell activation and development in transgenic mice expressing the HIV-1 nef gene. EMBO J 12:703–713

    PubMed  CAS  Google Scholar 

  • Sloand EM, Young NS, Sato T et al (1997) Secondary colony formation after long-term bone marrow culture using peripheral blood and bone marrow of HIV-infected patients. AIDS 11:1547–1553

    PubMed  CAS  Google Scholar 

  • Smith BL, Krushelnycky BW, Mochly-Rosen D et al (1996) The HIV nef protein associates with protein kinase C theta. J Biol Chem 271:16753–16757

    PubMed  CAS  Google Scholar 

  • Sol-Foulon N, Moris A, Nobile C et al (2002) HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16:145–155

    PubMed  CAS  Google Scholar 

  • Specht A, DeGottardi MQ, Schindler M et al (2008) Selective downmodulation of HLA-A and -B by Nef alleles from different groups of primate lentiviruses. Virology 373:229–237

    PubMed  CAS  Google Scholar 

  • Stevenson M (2003) HIV-1 pathogenesis. Nat Med 9:853–860

    PubMed  CAS  Google Scholar 

  • Stumptner-Cuvelette P, Jouve M, Helft J et al (2003) Human immunodeficiency virus-1 Nef expression induces intracellular accumulation of multivesicular bodies and major histocompatibility complex class II complexes: potential role of phosphatidylinositol 3-kinase. Mol Biol Cell 14:4857–4870

    PubMed  CAS  Google Scholar 

  • Stumptner-Cuvelette P, Morchoisne S, Dugast M et al (2001) HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc Natl Acad Sci U S A 98:12144–12149

    PubMed  CAS  Google Scholar 

  • Swann SA, Williams M, Story CM et al (2001) HIV-1 Nef blocks transport of MHC class I molecules to the cell surface via a PI 3-kinase-dependent pathway. Virology 282:267–277

    PubMed  CAS  Google Scholar 

  • Swigut T, Alexander L, Morgan J et al (2004) Impact of Nef-mediated downregulation of major histocompatibility complex class I on immune response to simian immunodeficiency virus. J Virol 78:13335–13344

    PubMed  CAS  Google Scholar 

  • Swigut T, Greenberg M, Skowronski J (2003) Cooperative interactions of simian immunodeficiency virus Nef, AP-2, and CD3-zeta mediate the selective induction of T-cell receptor-CD3 endocytosis. J Virol 77:8116–8126

    PubMed  CAS  Google Scholar 

  • Swigut T, Shohdy N, Skowronski J (2001) Mechanism for down-regulation of CD28 by Nef. EMBO J 20:1593–1604

    PubMed  CAS  Google Scholar 

  • Swigut T, Iafrate AJ, Muench J et al (2000) Simian and human immunodeficiency virus Nef proteins use different surfaces to downregulate class I major histocompatibility complex antigen expression. J Virol 74:5691–5701

    PubMed  CAS  Google Scholar 

  • Swingler S, Brichacek B, Jacque JM et al (2003) HIV-1 Nef intersects the macrophage CD40L signalling pathway to promote resting-cell infection. Nature 424:213–219

    PubMed  CAS  Google Scholar 

  • Swingler S, Mann A, Jacque J et al (1999) HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 5:997–103

    PubMed  CAS  Google Scholar 

  • Swingler S, Zhou J, Swingler C et al (2008) Evidence for a pathogenic determinant in HIV-1 Nef involved in B cell dysfunction in HIV/AIDS. Cell Host Microbe 17:63–76

    Google Scholar 

  • Tobiume M, Lineberger JE, Lundquist CA et al (2003) Nef does not affect the efficiency of human immunodeficiency virus type 1 fusion with target cells. J Virol 77:10645–10650

    PubMed  CAS  Google Scholar 

  • Toussaint H, Gobert FX, Schindler M et al (2008) Human immunodeficiency virus type 1 nef expression prevents AP-2-mediated internalization of the major histocompatibility complex class II-associated invariant chain. J Virol 82:8373–8382

    PubMed  CAS  Google Scholar 

  • Trible RP, Emert-Sedlak L, Smithgall TE (2006) HIV-1 Nef selectively activates Src family kinases Hck, Lyn, and c-Src through direct SH3 domain interaction. J Biol Chem 281:27029–27038

    PubMed  CAS  Google Scholar 

  • Varin A, Manna SK, Quivy V et al (2003) Exogenous Nef protein activates NF-kappa B, AP-1, and c-Jun N-terminal kinase and stimulates HIV transcription in promonocytic cells. Role in AIDS pathogenesis. J Biol Chem 278:2219–2227

    CAS  Google Scholar 

  • Venzke S, Michel N, Allespach I et al (2006) Expression of Nef downregulates CXCR4, the major coreceptor of human immunodeficiency virus, from the surfaces of target cells and thereby enhances resistance to superinfection. J Virol 80:11141–11152

    PubMed  CAS  Google Scholar 

  • Wang JH, Janas AM, Olson WJ et al (2007) CD4 coexpression regulates DC-SIGN-mediated transmission of human immunodeficiency virus type 1. J Virol 81:2497–2507

    PubMed  CAS  Google Scholar 

  • Wang JK, Kiyokawa E, Verdin E et al (2000) The Nef protein of HIV-1 associates with rafts and primes T cells for activation. Proc Natl Acad Sci U S A 97:394–399

    PubMed  CAS  Google Scholar 

  • Welker R, Kottler H, Kalbitzer HR et al (1996) Human immunodeficiency virus type 1 Nef protein is incorporated into virus particles and specifically cleaved by the viral proteinase. Virology 219:228–236

    PubMed  CAS  Google Scholar 

  • Wildum S, Schindler M, Munch J et al (2006) Contribution of Vpu, Env, and Nef to CD4 down-modulation and resistance of human immunodeficiency virus type 1-infected T cells to superinfection. J Virol 80:8047–8059

    PubMed  CAS  Google Scholar 

  • Williams M, Roeth JF, Kasper MR et al (2002) Direct binding of human immunodeficiency virus type 1 Nef to the major histocompatibility complex class I (MHC-I) cytoplasmic tail disrupts MHC-I trafficking. J Virol 76:12173–12184

    PubMed  CAS  Google Scholar 

  • Wiskerchen M, Cheng-Mayer C (1996) HIV-1 Nef association with cellular serine kinase correlates with enhanced virion infectivity and efficient proviral DNA synthesis. Virology 224:292–301

    PubMed  CAS  Google Scholar 

  • Wolf D, Witte V, Laffert B et al (2001) HIV-1 Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 7:1217–1224

    PubMed  CAS  Google Scholar 

  • Wu Y, Marsh JW (2001) Selective transcription and modulation of resting T cell activity by preintegrated HIV DNA. Science 293:1503–1506

    PubMed  CAS  Google Scholar 

  • Xu XN, Laffert B, Screaton GR et al (1999) Induction of Fas ligand expression by HIV involves the interaction of Nef with the T cell receptor zeta chain. J Exp Med 189:1489–1496

    PubMed  CAS  Google Scholar 

  • Yang X, Gabuzda D (1999) Regulation of human immunodeficiency virus type 1 infectivity by the ERK mitogen-activated protein kinase signaling pathway. J Virol 73:3460–3466

    PubMed  CAS  Google Scholar 

  • Zauli G, Gibellini D, Secchiero P et al (1999) Human immunodeficiency virus type 1 Nef protein sensitizes CD4(+) T lymphoid cells to apoptosis via functional upregulation of the CD95/CD95 ligand pathway. Blood 93:1000–1010

    PubMed  CAS  Google Scholar 

  • Zhang F, Wilson SJ, Landford WC, Virgen B, Gregory D, Johnson MC, Munch J, Kirchhoff F, Bieniasz PD, Hatziioannou T (2009) Nef Proteins from Simian Immunodeficiency Viruses Are Tetherin Antagonists. Cell Host Microbe 2009 Jun 3. [Epub ahead of print]

    Google Scholar 

Download references

Acknowledgments

We thank all current and former members of the Kirchhoff laboratory and our many excellent collaborators, especially Beatrice Hahn, Leonid Margolis, Jean-Chartes Grivel, David Evans, Guido Silvestri, Jacek Skowronski and Christiane Stahl-Hennig, for support, helpful discussion and sharing reagents and knowledge. We apologize to those colleagues whose studies on Nef function could not be mentioned due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Kirchhoff .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Arhel, N.J., Kirchhoff, F. (2009). Implications of Nef: Host Cell Interactions in Viral Persistence and Progression to AIDS. In: Spearman, P., Freed, E. (eds) HIV Interactions with Host Cell Proteins. Current Topics in Microbiology and Immunology, vol 339. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02175-6_8

Download citation

Publish with us

Policies and ethics