Skip to main content

Handover Incentives for WLANs with Overlapping Coverage

  • Conference paper
Wired/Wireless Internet Communications (WWIC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5546))

Included in the following conference series:

Abstract

It is well known that in IEEE 802.11 networks, the assignment of low-rate and high-rate users to the same access point significantly degrades the performance of the high-rate users. Our objective is to investigate the implications of the above performance degradation on the incentives for handover between 802.11 wireless local area networks with overlapping coverage. Our focus is on the incentives for supporting handovers, due solely to the improved performance handovers yield for both wireless networks. To study the phenomenon and estimate the potential gain of such handovers, we propose a simple model that predicts the throughput of each access point in different cases. The throughput approximation model can indicate when the handover is expected to be beneficial, and can be used in a handover acceptance policy. Simulation of the proposed procedure suggests that the model is accurate and that there are significant throughput gains for both wireless networks.

This work was supported in part by the European Commission in the 7th Framework Programme through project EU-MESH (Enhanced, Ubiquitous, and Dependable Broadband Access using MESH Networks), ICT-215320, http://www.eu-mesh.eu

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Heusse, M., Rousseau, F., Berger-Sabbatel, G., Duda, A.: Performance anomaly of 802.11b. In: Proc. of IEEE INFOCOM (2003)

    Google Scholar 

  2. Akella, A., Judd, G., Seshan, S., Steenkiste, P.: Self-Management in Chaotic Wireless Deployments. WINET Journal 13(6), 737–755 (2007)

    Google Scholar 

  3. Siris, V.A., Stamatakis, G.: Optimal CWmin Selection for Achieving Proportional Fairness in Multi-rate 802.11e WLANs: Test-bed Implementation and Evaluation. In: Proc. of ACM WiNTECH (2006)

    Google Scholar 

  4. Tan, G., Guttag, J.: Time-based Fairness Improves Performance in Multi-Rate WLANs. In: Proc. of USENIX Annual Technical Conference (2004)

    Google Scholar 

  5. Feeney, L.M., Cetin, B., Hollos, D., Kubisch, M., Mengesha, S., Karl, H.: Multi-rate relaying for performance improvement in IEEE 802.11 WLANs. In: Proc. of WWIC (2007)

    Google Scholar 

  6. Bahl, V., Chandra, R., Lee, P.P.C., Misra, V., Padhye, J., Rubenstein, D., Yu, Y.: Opportunistic Use of Client Repeaters to Improve Performance of WLANs. In: Proc. of ACM CoNEXT (2008)

    Google Scholar 

  7. Kandula, S., Ching-Ju Lin, K., Badirkhanli, T., Katabi, D.: FatVAP: Aggregating AP Backhaul Capacity to Maximize Throughput. In: Proc. of the 5th USENIX Symposium on Networked Systems Design and Implementation (2008)

    Google Scholar 

  8. Liu, P., Tao, Z., Narayanan, S., Korakis, T., Panwar, S.: A Cooperative MAC protocol for Wireless LANs. IEEE JSAC 25(2) (2007)

    Google Scholar 

  9. Kumar, A., Altman, E., Miorandi, D., Goyal, M.: New Insights from a Fixed Point Analysis of Single Cell IEEE 802.11 WLANs. In: Proc. of IEEE INFOCOM (2005)

    Google Scholar 

  10. Kumar, A., Kumar, V.: Optimal Association of Stations and APs in an IEEE 802.11 WLAN. In: Proc. of National Conference on Communications (NCC) (2005)

    Google Scholar 

  11. Kasbekar, G., Kuri, J., Nuggehalli, P.: Online Association Policies in IEEE 802.11 WLANs. In: Proc. of 4th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks, WiOpt (2006)

    Google Scholar 

  12. Kauffmann, B., Baccelli, F., Chaintreau, A., Mhatre, V., Papagiannaki, K., Diot, C.: Measurement-based Self Organization of Interfering 802.11 Wireless Access Networks. In: Proc. of IEEE INFOCOM (2007)

    Google Scholar 

  13. Koukoutsidis, I., Siris, V.A.: Access Point Assignment Algorithms in WLANs based on Throughput Objectives. In: Proc. of 6th Intl. Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt) (2008)

    Google Scholar 

  14. Mangold, S., Choi, S., Hiertz, G.R., Klein, O.: Analysis of IEEE 802.11e for QoS Support in Wireless LANs. IEEE Wireless Communications 10(6), 40–50 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fafoutis, X., Siris, V.A. (2009). Handover Incentives for WLANs with Overlapping Coverage. In: van den Berg, H., Heijenk, G., Osipov, E., Staehle, D. (eds) Wired/Wireless Internet Communications. WWIC 2009. Lecture Notes in Computer Science, vol 5546. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02118-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02118-3_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02117-6

  • Online ISBN: 978-3-642-02118-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics