Skip to main content

Regulation of G Protein Receptor Coupling, Mood Disorders and Mechanism of Action of Antidepressants

  • Chapter
  • First Online:
Signal Transduction: Pathways, Mechanisms and Diseases

Mood disorders are highly prevalent. Antidepressants and mood stabilizers were discovered in the 1950s, but the pathophysiology of these disorders remains undeciphered. The “pharmacological bridge” approach led to the construction of the catecholamine and indoleamine hypotheses for mood disorders. Biochemical research in mood disorders has lately focused on information transduction and regulatory mechanisms involving the coupling of receptors with signal transducers. G protein receptor-coupled signal transduction is regulated at various points: A proximal point is receptor coupling with G protein, regulated by G protein-coupled receptor kinases (GRKs) and β-arrestins Cytosolic regulators of G protein function are phosducin-like proteins A distal point is GTPase activity, regulated by regulators of G protein signaling (RGS). This chapter presents findings concerning the importance of these regulatory processes for the pathophysiology of mood disorders and for the mechanism of action of antidepressants. The strengths and limitations of the “pharmacological bridge” approach governing pathophysiological studies of mental disorders are highlighted and the possibility of future biochemical diagnostic and treatment-monitoring systems for mood disorders is addressed. Such an achievement is expected to be revolutionary, with a magnitude similar to the impact of the discovery of psychopharmacological treatments for mental disorders more than 50 years ago.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahn S, Shenoy SK, Wei H, Lefkowitz RJ (2004) Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 279(34):35518–35525

    CAS  PubMed  Google Scholar 

  • American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders (DSM-IV), 4th edn. American Psychiatric Association, Washington DC

    Google Scholar 

  • Avissar S, Schreiber G (2002) Towards molecular diagnostics of mood disorders in psychiatry. Trends Mol Med 8:294–300

    CAS  PubMed  Google Scholar 

  • Avissar S, Nechamkin Y, Roitman G, Schreiber G (1997) Reduced G protein functions and immunoreactive levels in mononuclear leukocytes of patients with depression. Am J Psychiatry 154:211–217

    CAS  PubMed  Google Scholar 

  • Avissar S, Schreiber G, Lam G, Schwartz P, Turner E, Matthews J, Naim S, Neuhaus I, Rosenthal NE (1999) The effects of seasons and light therapy on G proteins levels in mononuclear leukocytes of patients with seasonal affective disorder. Arch Gen Psychiatry 56:178–183

    CAS  PubMed  Google Scholar 

  • Avissar S, Matuzany-Ruban A, Tzukert K, Schreiber G (2004) Beta-arrestin-1 levels: reduced in leukocytes of patients with depression and elevated by antidepressants in rat brain. Am J Psychiatry 161:2066–2072

    PubMed  Google Scholar 

  • Barrett TB, Hauger RL, Kennedy JL, Sadovnick AD, Remick RA, Keck PE, McElroy SL, Alexander M, Shaw SH, Kelsoe JR (2003) Evidence that a single nucleotide polymorphism in the promoter of the G protein receptor kinase 3 gene is associated with bipolar disorder. Mol Psychiatry 8:546–547

    CAS  PubMed  Google Scholar 

  • Bauer PH, Lohse MJ (1998) Effects of phosducin on the GTPase cycle of Go. Naunyn Schmiedebergs Arch Pharmacol 357:371–377

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Caron MG (2005) Beta-arrestin goes nuclear. Cell 123(5):755–757

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122(2):261–273

    CAS  PubMed  Google Scholar 

  • Beaulieu JM, Marion S, Rodriguiz RM, Medvedev IO, Sotnikova TD, Ghisi V, Wetsel WC, Lefkowitz RJ, Gainetdinov RR, Caron MG (2008) A beta-arrestin 2 signaling complex mediates lithium action on behavior. Cell 132:125–136

    CAS  PubMed  Google Scholar 

  • Benovic JL, Mayor F, Somers RL, Caron MG, Lefkowitz RJ (1986) Light-dependent phosphorylation of rhodopsin by beta-adrenergic receptor kinase. Nature 321:869–872

    CAS  PubMed  Google Scholar 

  • Berman DM, Kozasa T, Gilman AG (1996) The GTPase-activating protein RGS4 stabilizes the transition state for nucleotide hydrolysis. J Biol Chem 271:27209–27212

    CAS  PubMed  Google Scholar 

  • Bouvier M, Hausdorff WP, De Blasi A, O’Dowd BF, Kobilka BK, Caron MG, Lefkowitz RJ (1988) Removal of phosphorylation sites from the β2-adrenergic receptor delays the onset of agonist-promoted desensitization. Nature (Lond) 333:370–373

    CAS  Google Scholar 

  • Brzustowicz LM, Hodgkinson KA, Chow EW, Honer WG, Bassett AS (2000) Location of a major susceptibility locus for familial schizophrenia on chromosome 1q21–q22. Science 288:678–682

    CAS  PubMed  Google Scholar 

  • Cade JFJ (1949) Lithium salts in the treatment of psychotic excitement. Med J Australia 2:349–352

    CAS  PubMed  Google Scholar 

  • Carroll BJ (1985) Dexamethasone suppression test: a review of contemporary confusion. J Clin Psychol 46:13–20

    CAS  Google Scholar 

  • Chen TC, Wadsten P, Su S, Rawlinson N, Hofman FM, Hill CK, Schonthal AH (2002) The type IV phosphodiesterase inhibitor rolipram induces expression of the cell cycle inhibitors p21(Cip1) and p27(Kip1), resulting in growth inhibition, increased differentiation, and subsequent apoptosis of malignant A-172 glioma cells. Cancer Biol Ther 1(3):268–276

    CAS  PubMed  Google Scholar 

  • Chen X, Dunham C, Kendler S, Wang X, O’Neill FA, Walsh D, Kendler KS (2004) Regulator of G-protein signaling 4 (RGS4) gene is associated with schizophrenia in Irish high density families. Am J Med Genet B Neuropsychiatr Genet 129:23–26

    Google Scholar 

  • Chowdari KV, Mirnics K, Semwal P, Wood J, Lawrence E, Bhatia T, Deshpande SN, KT B, Ferrell RE, Middleton FA, Devlin B, Levitt P, Lewis DA, Nimgaonkar VL (2002) Association and linkage analyses of RGS4 polymorphisms in schizophrenia. Hum Mol Genet 11(12):1373–1380

    CAS  PubMed  Google Scholar 

  • Chuang TT, LeVine H, De Blasi A (1995) Phosphorylation and activation of β-adrenergic receptor kinase by protein kinase C. J Biol Chem 270:18660–18665

    CAS  PubMed  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483

    CAS  PubMed  Google Scholar 

  • Dahmen N, Fehr C, Reuss S, Hiemke C (1997) Stimulation of immediate early gene expression by desipramine in rat brain. Biol Psychiatry 42(5):317–323

    CAS  PubMed  Google Scholar 

  • DeFea KA, Vaughn ZD, OB EM, Nishijima D, Déry O, Bunnett NW (2000a) The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta-arrestin-­dependent scaffolding complex. Proc Natl Acad Sci USA 97:11086–11091

    CAS  PubMed  Google Scholar 

  • DeFea KA, Zalevsky J, Thoma MS, Déry O, Mullins RD, Bunnett NW (2000b) beta-arrestin-dependent endocytosis of proteinase-activated receptor 2 is required for intracellular targeting of activated ERK1/2. J Cell Biol 148:1267–1281

    CAS  PubMed  Google Scholar 

  • Delay J, Deniker P (1952) Le traitement des psychoses par une methode neurolytique derive de l’hibernotherapie. Neurol France 50:497–451

    Google Scholar 

  • Dwivedi Y, Rizavi HS, Roberts RC, Conley RC, Tamminga CA, Pandey GN (2001) Reduced activation and expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J Neurochem 77:916–928

    CAS  PubMed  Google Scholar 

  • Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G (2003) The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316

    CAS  PubMed  Google Scholar 

  • Ertley RN, Bazinet RP, Lee HJ, Rapoport SI, Rao JS (2007) Chronic treatment with mood stabilizers increases membrane GRK3 in rat frontal cortex. Biol Psychiatry 15:246–249

    Google Scholar 

  • Ferguson SS (2001) Evolving Concepts in G Protein-Coupled Receptor Endocytosis: the Role in Receptor Desensitization and Signaling. Pharmacol Rev 53:1–24

    CAS  PubMed  Google Scholar 

  • Freedman HJ, Lefkowitz RJ (1996) Desensitization of G protein-coupled receptors. Rec Prog Horm Res 51:319–351

    CAS  PubMed  Google Scholar 

  • Gagnon AW, Kallal L, Benovic JL (1998) Role of clathrin-mediated endocytosis in agonist-induced down-regulation of the beta2-Adrenergic Receptor. J Biol Chem 12:6976–6981

    Google Scholar 

  • Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG (2004) Desensitization of G protein-coupled receptors and neuronal functions. Annu Rev Neurosci 27:107–144

    CAS  PubMed  Google Scholar 

  • Garcia-Sevilla JA, Escriba PV, Ozaita A, La Harpe R, Walzer C, Eytan A, Guimon J (1999) Up-regulation of immunolabeled alpha2A-adrenoceptors, Gi coupling proteins, and regulatory receptor kinases in the prefrontal cortex of depressed suicides. J Neurochem 72:282–291

    CAS  PubMed  Google Scholar 

  • Garcia-Sevilla JA, Ventayol P, Perez V, Rubovszky G, Puigdemont D, Ferrer-Alcon M, Andreoli A, Guimon J, Alvarez E (2004) Regulation of platelet alpha 2A-adrenoceptors, Gi proteins and receptor kinases in major depression: effects of mirtazapine treatment. Neuropsychopharmacology 29:580–588

    CAS  PubMed  Google Scholar 

  • Garzon J, Rodriguez-Diaz M, Lopez-Fando A, Garcia-Espana A, Sanchez-Blazquez P (2002) Glycosylated phosducin-like protein long regulates opioid receptor function in mouse brain. Neuropharmacology 42(6):813–828

    CAS  PubMed  Google Scholar 

  • Goodman OB Jr, Krupnick JG, Santini F, Gurevich VV, Penn RB, Gagnon AW, Keen JH, Benovic JL (1996) Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature 383:447–450

    CAS  PubMed  Google Scholar 

  • Grange-Midroit M, Garcia-Sevilla JA, Ferrer-Alcon M, La Harpe R, Huguelet P, Guimon J (2003) Regulation of GRK 2 and 6, beta-arrestin-2 and associated proteins in the prefrontal cortex of drug-free and antidepressant drug-treated subjects with major depression. Brain Res Mol Brain Res 111:31–41

    CAS  PubMed  Google Scholar 

  • Gurevich VV, Gurevich EV (2003) The new face of active receptor bound arrestin attracts new partners. Structure 11:1037–1042

    CAS  PubMed  Google Scholar 

  • Janowsky DS, El-Yousef MK, Davis JM, Sekerke HJ (1972) A cholinergic-adrenergic hypothesis of mania and depression. Lancet 2:632–635

    CAS  PubMed  Google Scholar 

  • Kang J, Shi Y, Xiang B, Qu B, Su W, Zhu M, Zhang M, Bao G, Wang F, Zhang X, Yang R, Fan F, Chen X, Pei G, Ma L (2005) A nuclear function of beta-arrestin1 in GPCR signaling: regulation of histone acetylation and gene transcription. Cell 123:833–847

    CAS  PubMed  Google Scholar 

  • Koch WJ, Inglese J, Stone WC, Lefkowitz RJ (1993) The binding site for the βγ subunits of heterotrimeric G proteins on the β-adrenergic receptor kinase. J Biol Chem 268:8256–8260

    CAS  PubMed  Google Scholar 

  • Kristen LP, Lefkowitz RJ (2001) Classical and new roles of β-arrestin in the regulation of G-protein-coupled receptors. Nature Reviews 2:727–730

    Google Scholar 

  • Kuhn R (1957) The treatment of depressive states with an iminodibenzyl derivative (G 22355). Swiss Med J 87:1135–1140

    CAS  Google Scholar 

  • Kuipers SD, Trentani A, Westenbroek C, Bramham CR, Korf J, Kema IP, Ter Horst GJ, Den Boer JA (2006) Unique patterns of FOS, phospho-CREB and BrdU immunoreactivity in the female rat brain following chronic stress and citalopram treatment. Neuropharmacology 50(4):428–440

    CAS  PubMed  Google Scholar 

  • Kyosseva SV (2004) Mitogen-Activated Protein Kinase Signaling. Int Rev Neurobiol 59:201–220

    CAS  PubMed  Google Scholar 

  • Kyosseva SV, Elbein AD, Hutton TL, Griffin WST, Mrak RE, Lyon M, Karson CN (1999) Mitogen-activated protein kinases in schizophrenia. Biol Psychiatry 46:689–696

    CAS  PubMed  Google Scholar 

  • Kyosseva SV, Owens SM, Elbein AD, Karson CN (2001) Differential and region-specific activation of mitogen-activated protein kinases following chronic administration of phencyclidine in rat brain. Neuropsychopharmacology 24:267–277

    CAS  PubMed  Google Scholar 

  • Lapin IP, Oxenkrug GF (1969) Intensification of the central serotoninergic processes as a possible determinant of the thymoleptic effect. Lancet 1:132–136

    CAS  PubMed  Google Scholar 

  • Laporte SA, Oakley RH, Zhang J, Holt JA, Ferguson SS, Caron MG, Barak LS (1999) The beta2-adrenergic receptor/beta-arrestin complex recruits the clathrin adaptor AP-2 during endocytosis. Proc Natl Acad Sci USA 96:3712–3717

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ (2004) Historical review: a brief history and personal retrospective of seven-­transmembrane receptors. Trends Pharmacol Sci 25:413–422

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Hausdorff WP, Caron MG (1990) Role of phosphorylation in desensitization of the beta-adrenoceptor. Trends Pharmacol Sci 11:190–194

    CAS  PubMed  Google Scholar 

  • Li X, Huston E, Lynch MJ, Houslay MD, Baillie GS (2006) Phosphodiesterase-4 influences the PKA phosphorylation status and membrane translocation of G-protein receptor kinase 2 (GRK2) in HEK-293beta2 cells and cardiac myocytes. Biochem J 394(Pt 2):427–435

    CAS  PubMed  Google Scholar 

  • Lin FT, Krueger KM, Kendall HE, Daaka Y, Fredericks ZL, Pitcher JA, Lefkowitz RJ (1997) Clathrin-mediated endocytosis of the β-adrenergic receptor is regulated by phosphorylation/dephosphorylation of β-arrestin1. J Biol Chem 272:31051–31057

    CAS  PubMed  Google Scholar 

  • Lin FT, Miller WM, Luttrell LM, Lefkowitz RJ (1999) Feedback regulation of β-arrestin1 function by extracellular signal-regulated kinases. J Biol Chem 274:15971–15974

    CAS  PubMed  Google Scholar 

  • Lin FT, Chen W, Shenoy SK, Cong M, Exum ST, Lefkowitz RJ (2002) Phosphorylation of β-arrestin2 regulates its function in internalization of β2-adrenergic receptors. Biochemistry 41:10692–10699

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ (1990) Beta-Arrestin: a protein that regulates beta-adrenergic receptor function. Science 248:1547–1550

    CAS  PubMed  Google Scholar 

  • Loomer HP, Saunders JC, Kline NS (1957) A clinical and pharmacodynamic evaluation of iproniazid as a psychic energizer. Psychiatr Res Rep 8:129–134

    CAS  Google Scholar 

  • Luttrell LM, Lefkowitz RJ (2002) The role of beta-arrestins in the termination and transduction of G-protein coupled receptor signals. J Cell Sci 115:455–465

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Ferguson SS, Daaka Y, Miller WE, Maudsley S, Della Rocca GJ, Lin F, Kawakatsu H, Owada K, Luttrell DK, Caron MG, Lefkowitz RJ (1999) Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science 283:655–661

    CAS  PubMed  Google Scholar 

  • Luttrell LM, Roudabush FL, Choy EW, Miller WE, Field ME, Pierce KL, Lefkowitz RJ (2001) Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 98:2449–2454

    CAS  PubMed  Google Scholar 

  • Matuzany-Ruban A, Avissar S, Schreiber G (2005) Dynamics of beta-arrestin1 protein and mRNA levels elevation by antidepressants in MNL of patients with depression. J Affect Disord 88:307–312

    CAS  PubMed  Google Scholar 

  • Matuzany-Ruban A, Schreiber G, Farkash P, Avissar S (2006) Phosducin-like protein levels in leukocytes of patients with major depression and in rat cortex: the effect of chronic treatment with antidepressants. Psychiatry Res 141(3):287–294

    CAS  PubMed  Google Scholar 

  • McDonald PH, Chow CW, Miller WE, Laporte SA, Field ME, Lin FT, Davis RJ, Lefkowitz RJ (2000) Beta-arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577

    CAS  PubMed  Google Scholar 

  • Mercier G, Lennon AM, Renouf B, Dessouroux A, Ramauge M, Courtin F, Pierre M (2004) MAP kinase activation by fluoxetine and its relation to gene expression in cultured rat astrocytes. J Mol Neurosci 24:207–216

    CAS  PubMed  Google Scholar 

  • Metaye T, Gibelin H, Perdrisot R, Kraimps JL (2005) Pathophysiological roles of G-protein-coupled receptor kinases. Cellular Signalling 17:917–928

    CAS  PubMed  Google Scholar 

  • Miralles A, Asensio VJ, Garcia-Sevilla JA (2002) Acute treatment with the cyclic antidepressant desipramine, but not fluoxetine, increases membrane-associated G protein-coupled receptor kinases 2/3 in rat brain. Neuropharmacology 43:1249–1257

    CAS  PubMed  Google Scholar 

  • Mirnics K, Middleton FA, Stanwood GD, Lewis DA, Levitt P (2001) Disease-specific changes in regulator of G-protein signaling 4 (RGS4) expression in schizophrenia. Mol Psychiatry 6(3):293–301

    CAS  PubMed  Google Scholar 

  • Miyata S, Hamamura T, Lee Y, Miki M, Habara T, Oka T, Endo S, Taoka H, Kuroda S (2005) Contrasting Fos expression induced by acute reboxetine and fluoxetine in the rat forebrain: neuroanatomical substrates for the antidepressant effect. Psychopharmacology (Berl) 177(3):289–295

    CAS  Google Scholar 

  • Morelli M, Pinna A, Ruiu S, Del Zompo M (1999) Induction of Fos-like-immunoreactivity in the central extended amygdala by antidepressant drugs. Synapse 31:1–4

    CAS  PubMed  Google Scholar 

  • Morinobu S, Strausbaugh H, Terwilliger R, Duman RS (1997) Regulation of c-Fos and NGF1-A by antidepressant treatments. Synapse 25:313–20

    CAS  PubMed  Google Scholar 

  • Morris DW, Rodgers A, McGhee KA, Schwaiger S, Scully P, Quinn J, Meagher D, Waddington JL, Gill M, Corvin AP (2004) Confirming RGS4 as a susceptibility gene for schizophrenia. Am J Med Genet B Neuropsychiatr Genet 125:50–53

    Google Scholar 

  • Muller S, Straub A, Schroder S, Bauer PH, Lohse MH (1996) Interaction of phosducin with defined G protein βγ-subunits. J Biol Chem 271:11781–11788

    CAS  PubMed  Google Scholar 

  • Murakami A, Yajima T, Sakuma H, McClaren MJ, Inana G (1993) X-Arrestin: a new retinal arrestin mapping to the X chromosome. FEBS Lett 334:203–209

    CAS  PubMed  Google Scholar 

  • Murray CJL, Lopez AD (1996) The global burden of disease: a comprehensive assessment of mortality and disability from diseases, injuries and risk factors in 1990 and projected to 2020. Harvard University Press, Cambridge

    Google Scholar 

  • Niculescu AB, Segal DS, Kuczenski R (2000) Identifying a serious of candidate genes for mania and psychosis: a convergent functional genomics approach. Physiol Genomics 9:83–91

    Google Scholar 

  • Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG (1999) Association of β-arrestin with G protein-coupled receptors during clathrin-mediated endocytosis dictates the profile of receptor resensitization. J Biol Chem 274:32248–32257

    CAS  PubMed  Google Scholar 

  • Palczewski K (1997) GTP-binding-protein-coupled receptor kinases–two mechanistic models. Eur J Biochem 248:261–269

    CAS  PubMed  Google Scholar 

  • Parruti G, Peracchia F, Sallese M, Ambrosini G, Masini M, Rotilio D, De Blasi A (1993) Molecular analysis of human beta-arrestin-1: cloning, tissue distribution, and regulation of expression. J Biol Chem 268:9753–9761

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Inglese J, Higgins JB, Arriza JL, Casey PJ, Kim C, Benovic JL, Kwatra MM, Caron MG, Lefkowitz RJ (1992) Role of beta gamma subunits of G proteins in targeting the beta-adrenergic receptor kinase to membrane-bound receptors. Science 257(5074):1264–1267

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Freedman NJ, Lefkowitz RJ (1998) G protein-coupled receptor kinases. Annu Rev Biochem 67:653–692

    CAS  PubMed  Google Scholar 

  • Pitcher JA, Tesmer JJ, Freeman JL, Capel WD, Stone WC, Lefkowitz RJ (1999) Feedback inhibition of G protein-coupled receptor kinase 2 (GRK2) activity by extracellular signal-regulated kinases. J Biol Chem 274:34531–34534

    CAS  PubMed  Google Scholar 

  • Prange AJ, Wilson IC, Lynn CW, Alltop LB, Stikeleather RA (1974) L-tryptophan in mania. Contribution to a permissive hypothesis of affective disorders. Arch Gen Psychiatry 30:56–62

    Google Scholar 

  • Sarnago S, Elorza A, Mayor F Jr (1999) Agonist-dependent phosphorylation of the G ­protein-coupled receptor kinase 2 (GRK2) by Src tyrosine kinase. J Biol Chem 274:34411–34416

    CAS  PubMed  Google Scholar 

  • Schildkraut J (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    CAS  PubMed  Google Scholar 

  • Schulz R (2001) The pharmacology of phosducin. Pharmacol Res 43:1–10

    CAS  PubMed  Google Scholar 

  • Schulz K, Danner S, Bauer P, Schroder S, Lohse MJ (1996) Expression of phosducin in a phosducin-negative cell line reveals functions of a Gbetagamma-binding protein. J Biol Chem 271:22546–22551

    CAS  PubMed  Google Scholar 

  • Scott MG, Le Rouzic E, Perianin A, Pierotti V, Enslen H, Benichou S, Marullo S, Benmerah A (2002) Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J Biol Chem 277:37693–37701

    CAS  PubMed  Google Scholar 

  • Seeman P, Lee T, Chau-Wong M, Wong K (1976) Antipsychotic drug doses and neuroleptic dopamine receptors. Nature 261:717–719

    CAS  PubMed  Google Scholar 

  • Shenoy SK, Lefkowitz RJ (2003) Multifaceted roles of β-arrestins in the regulation of seven-membrane spanning receptor trafficking and signaling. Biochem J 375:503–515

    CAS  PubMed  Google Scholar 

  • Siever LJ, Davis KL (1985) Overview: toward a dysregulation hypothesis of depression. Am J Psychiatry 142:1017–1031

    CAS  PubMed  Google Scholar 

  • Slattery DA, Morrow JA, Hudson AL, Hill DR, Nutt DJ, Henry B (2005) Comparison of alterations in c-fos and Egr-1 (zif268) expression throughout the rat brain following acute administration of different classes of antidepressant compounds. Neuropsychopharmacology 30:1278–1287

    CAS  PubMed  Google Scholar 

  • Stephen JP, Lefkowitz RJ (2002) Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 12:130–138

    Google Scholar 

  • Thibault MW, Sganga MW, Miles MF (1997) Interaction of phosducin-like protein with G protein βγ subunits. J Biol Chem 272:12253–12256

    CAS  PubMed  Google Scholar 

  • Tohgo A, Pierce KL, Choy EW, Lefkowitz RJ, Luttrell LM (2002) beta-Arrestin scaffolding of the ERK cascade enhances cytosolic ERK activity but inhibits ERK-mediated transcription following angiotensin AT1a receptor stimulation. J Biol Chem 277:9429–9436

    CAS  PubMed  Google Scholar 

  • Tohgo A, Choy EW, Gesty-Palmer D, Pierce KL, Laporte S, Oakley RH, Caron MG, Lefkowitz RJ, Luttrell LM (2003) The stability of the G protein-coupled receptor-beta-arrestin interaction determines the mechanism and functional consequence of ERK activation. J Biol Chem 278:6258–6267

    CAS  PubMed  Google Scholar 

  • Wang P, Wu Y, Ge X, Ma L, Pei G (2003) Subcellular localization of beta-arrestins is determined by their intact N domain and the nuclear export signal at the C terminus. J Biol Chem 278:11648–11653

    CAS  PubMed  Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, McCreadie RG, Buckland P, Sharkey V, Chowdari KV, Zammit S, Nimgaonkar V, Kirov G, Owen MJ, O’Donovan MC (2004) Support for RGS4 as a susceptibility gene for schizophrenia. Biol Psychiatry 55:192–195

    CAS  PubMed  Google Scholar 

  • Winstel R, Freund S, Krasel C, Hoppe E, Lohse MJ (1996) Protein kinase cross-talk: membrane targeting of the β-adrenergic receptor kinase by protein kinase C. Proc Natl Acad Sci USA 93:2105–2109

    CAS  PubMed  Google Scholar 

  • Wise A, Jupe SC, Ress S (2004) The identification of ligands at orphan G-protein coupled receptors. Annu Rev Pharmacol Toxicol 44:43–46

    CAS  PubMed  Google Scholar 

  • Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SSG (1997) A central role for beta-­arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization. J Biol Chem 272:27005–27014

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

S. Avissar is supported in part by a 2005 NARSAD Independent Investigator Award and holds of the Eugene Hecht Chair in Clinical Pharmacology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Schreiber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Golan, M., Schreiber, G., Avissar, S. (2010). Regulation of G Protein Receptor Coupling, Mood Disorders and Mechanism of Action of Antidepressants. In: Sitaramayya, A. (eds) Signal Transduction: Pathways, Mechanisms and Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02112-1_4

Download citation

Publish with us

Policies and ethics