Skip to main content

The Epididymis as a Target for Male Contraceptive Development

  • Chapter
  • First Online:
Fertility Control

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 198))

Abstract

The epididymis is an excellent target for the development of a male contraceptive. This is because the process of sperm maturation occurs in this organ; spermatozoa become motile and are able to recognise and fertilise an egg once they have traversed the epididymal duct. However, a number of attempts to interfere in sperm maturation and epididymal function or both have not been successful. The use of transgenic animals has proved useful in identifying a few epididymal targets but has yet to open the doors for drug development. Continuous focus on identifying additional epididymal targets and sperm-specific and epididymal-specific drugs is key to bringing a male contraceptive acting on the epididymis to the public.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen OM, Yeung CH, Vorum H, Wellner M, Andreassen TK, Erdmann B, Mueller EC, Herz J, Otto A, Cooper TG, Willnow TE (2003) Essential role of the apolipoprotein E receptor-2 in sperm development. J Biol Chem 278:23989–23995

    Article  PubMed  CAS  Google Scholar 

  • Avram C, Cooper TG (2004) Development of the caput epididymidis studied by expressed proteins, a glutamate transporter, a lipocalin and β−galactosidase in the c-ros knockout and wild type mice with prepubertally ligated efferent ducts. Cell Tiss Res 317(1):23–34

    CAS  Google Scholar 

  • Baba D, Kashiwabara S, Honda A, Yamagata K, Wu Q, Ikawa M, Okabe M, Baba T (2002) Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J Biol Chem 277:30310–30314

    Article  PubMed  CAS  Google Scholar 

  • Berubé B, Sullivan R (1994) Inhibition of in vivo fertilization by active immunization of male hamsters against a 26-kDa sperm glycoprotein. Biol Reprod 51:1255–1263

    Article  PubMed  Google Scholar 

  • Biver S, Belge HBS, Van Vooren P, Nowik M, Scohy S, Houillier P, Szpirer J, Szpirer CA, Devuyst O, Marini AM (2008) A role for Rhesus factor Rhcg in renal ammonium excretion and male fertility. Nature 456:339–343

    Article  PubMed  CAS  Google Scholar 

  • Blecher SR, Kirkeby S (1978) Histochemical studies on genetical control of hormonal enzyme inducibility in the mouse. I. Non-specific esterase activity and regional histology of the epididymis. J Anat 125:247–265

    PubMed  CAS  Google Scholar 

  • Blomqvist SR, Vidarsson H, Soder O, Enerback S (2006) Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J 25:4131–4141

    Article  PubMed  CAS  Google Scholar 

  • Boué F, Blais J, Sullivan R (1996) Surface localization of P34H, an epididymal protein, during maturation, capacitation, and acrosome reaction of human spermatozoa. Biol Reprod 54:1009–1017

    Google Scholar 

  • Butler A, He X, Gordon RE, Wu HS, Gatt S, Schuchman EH (2002) Reproductive pathology and sperm physiology in acid sphingomyelinase- deficient mice. Am J Pathol 161:1061–1075

    Article  PubMed  CAS  Google Scholar 

  • Butler A, Gordon RE, Gatt S, Schuchman EH (2007) Sperm abnormalities in heterozygous acid sphingomyelinase knockout mice reveal a novel approach for the prevention of genetic diseases. Am J Pathol 170:2077–2088

    Article  PubMed  CAS  Google Scholar 

  • Chen H, Griffiths G, Galileo DS, Martin-DeLeon PA (2006) Epididymal SPAM1 is a marker for sperm maturation in the mouse. Biol Reprod 74:923–930

    Article  PubMed  CAS  Google Scholar 

  • Cheung-Flynn J, Prapapanich V, Cox MB, Riggs DL, Suarez-Quian C, Smith DF (2005) Physiological role for the co-chaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19:1654–1666

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Barfield JP (2006) Utility of infertile male models for contraception and conservation. Mol Cell Endocrinol 250:206–211

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Yeung CH (1999) Recent biochemical approaches to post-testicular, epididymal contraception. Hum Reprod Update 5:141–152

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Yeung CH (2003) Approaches to post-testicular contraception: insights from the infertile c-ros knockout mouse. In: Hinton BT, Turner TT (eds) The third international conference on the Epididymis III. Van Doren Company, Charlottesville, pp 208–221

    Google Scholar 

  • Cooper TG, Wang XS, Yeung CH, Lewin LM (1997) Successful lowering of epididymal carnitine by administration of pivalate to rats. Int J Androl 20:180–188

    Article  PubMed  CAS  Google Scholar 

  • Cooper TG, Wagenfeld A, Cornwall GA, Hsia N, Chu ST, Orgebin-Crist M-C, Drevet J, Vernet P, Avram C, Nieschlag E, Yeung CH (2003) Gene and protein expression in the epididymis of infertile c-ros receptor tyrosine kinase-deficient mice. Biol Reprod 69:750–1762

    Article  Google Scholar 

  • Cooper TG, Yeung CH, Wagenfeld A, Nieschlag E, Poutanen M, Huhtaniemi I, Sipilä P (2004) Mouse models of infertility due to swollen spermatozoa. Mol Cell Endocrinol 216:55–63

    Article  PubMed  CAS  Google Scholar 

  • Cornwall GA, Hann SR (1995) Specialized gene expression in the epididymis. J Androl 16:379–383

    PubMed  CAS  Google Scholar 

  • Costa SL, Boekelheide K, Vanderhyden BC, Seth R, McBurney MW (1997) Male infertility caused by epididymal dysfunction in transgenic mice expressing a dominant negative mutation of retinoic acid receptor α. Biol Reprod 56:985–990

    Article  PubMed  CAS  Google Scholar 

  • Cyr DG, Gregory M, Dubé E, Dufresne J, Chan PT, Hermo L (2007) Orchestration of occludins, claudins, catenins and cadherins as players involved in maintenance of the blood–epididymal barrier in animals and humans. Asian J Androl 9:463–475

    Article  PubMed  CAS  Google Scholar 

  • Da Ros VG, Maldera JA, Willis WD, Cohen DJ, Goulding EH, Gelman DM, Rubinstein M, Eddy EM, Cuasnicu PS (2008) Impaired sperm fertilizing ability in mice lacking Cysteine-Rich Secretory Protein 1 (CRISP1). Dev Biol 320:12–18

    Article  PubMed  Google Scholar 

  • Davies B, Baumann C, Kirchhoff C, Ivell R, Nubbemeyer R, Habenicht UF, Theuring F, Gottwald U (2004) Targeted deletion of the epididymal receptor HE6 results in fluid dysregulation and male infertility. Mol Cell Biol 24:8642–8648

    Article  PubMed  CAS  Google Scholar 

  • Davies B, Behnen M, Cappallo-Obermann H, Spiess AN, Theuring F, Kirchhoff C (2007) Novel epididymis-specific mRNAs downregulated by HE6/Gpr64 receptor gene disruption. Mol Reprod Dev 74:539–553

    Article  PubMed  CAS  Google Scholar 

  • Dubé E, Chan PT, Hermo L, Cyr DG (2007) Gene expression profiling and its relevance to the blood–epididymal barrier in the human epididymis. Biol Reprod 7:1034–1044

    Article  Google Scholar 

  • El Elwi AN, Damaraju VL, Baldwin SA, Young JD, Sawyer MB, Cass CE (2006) Renal nucleoside transporters: physiological and clinical implications. Biochem Cell Biol 84:844–858

    Article  Google Scholar 

  • El-Deeb IM, Park BS, Jung SJ, Yoo KH, Oh CH, Cho SJ, Han DK, Lee JY, Lee SH (2009) Design, synthesis, screening, and molecular modeling study of a new series of ROS1 receptor tyrosine kinase inhibitors. Bioorg Med Chem Lett 19:5622–5626

    Article  PubMed  CAS  Google Scholar 

  • Ellerman DA, Myles DG, Primakoff P (2006) A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell 10:831–837

    Article  PubMed  CAS  Google Scholar 

  • Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H (2002) Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem 277:36262–36271

    Article  PubMed  CAS  Google Scholar 

  • Ensslin MA, Shur BD (2003) Identification of mouse sperm SED1, a bimotif EGF repeat and discoidin-domain protein involved in sperm-egg binding. Cell 114:405–417

    Article  PubMed  CAS  Google Scholar 

  • Eraly SA, Monte JC, Nigam SK (2004) Novel slc22 transporter homologs in fly, worm and human clarify the phylogeny of organic anion and cation transporters. Physiol Genomics 18:12–24

    Article  PubMed  CAS  Google Scholar 

  • Eyden BP, Maisin JR (1978) Observations on the structure and levels of expression or murine spermatozoan abnormalities with special reference to tail deformations. Arch d’Anat miscrop 67:19–30

    CAS  Google Scholar 

  • Friend DS, Gilula NB (1972) Variations in tight and gap junctions in mammalian tissues. J Cell Biol 53:758–776

    Article  PubMed  CAS  Google Scholar 

  • Gottwald U, Davies B, Fritsch M, Habenicht UF (2006) New approaches for male fertility control: HE6 as an example of a putative target. Mol Cell Endocrinol 250:49–57

    Article  PubMed  CAS  Google Scholar 

  • Gregory M, Cyr DG (2006) Identification of multiple claudins in the rat epididymis. Mol Reprod Dev 73:580–588

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GS, Galileo DS, Reese K, Martin-Deleon PA (2008a) Investigating the role of murine epididymosomes and uterosomes in GPI-linked protein transfer to sperm using SPAM1 as a model. Mol Reprod Dev 75:1627–1636

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GS, Miller KA, Galileo DS, Martin-DeLeon PA (2008b) Murine SPAM1 is secreted by the estrous uterus and oviduct in a form that can bind to sperm during capacitation: acquisition enhances hyaluronic acid-binding ability and cumulus dispersal efficiency. Reproduction 135:293–301

    Article  PubMed  CAS  Google Scholar 

  • Hinton BT, Howards SS (1981) Rat testis and epididymis can transpor (3H)3-O-methylglucose, (3H)inositol and (3H)α-aminoisobutyric acid across its epithelia in vivo. Biol Reprod 27:1181–1189

    Article  Google Scholar 

  • Hinton BT, Snoswell AM, Setchell BP (1979) The concentration of carnitine in the luminal fluid of the testis and epididymis of the rat and some other mammals. J Reprod Fert 56:105–111

    Article  CAS  Google Scholar 

  • Hoffer AP, Hinton BT (1984) Morphological evidence for a blood–epididymis barrier and the effects of gossypol on its integrity. Biol Reprod 30:991–1004

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Kim ST, Tranguch S, Smith DF, Dey SK (2007) Deficiency of co-chaperone immunophilin FKBP52 compromises sperm fertilizing capacity. Reproduction 133:395–403

    Article  PubMed  CAS  Google Scholar 

  • Hoshii T, Takeo T, Nakagata N, Takeya M, Araki K, Yamamura K-I (2007) LGR4 regulates the postnatal development and integrity of male reproductive tracts in mice. Biol Reprod 76:303–313

    Article  PubMed  CAS  Google Scholar 

  • Jelinsky SA, Turner TT, Bang HJ, Finger JN, Solarz MK, Wilson E, Brown EL, Kopf GS, Johnston DS (2007) The rat epididymal transcriptome: comparison of segmental gene expression in the rat and mouse epididymides. Biol Reprod 76:561–570

    Article  PubMed  CAS  Google Scholar 

  • Jervis KM, Robaire B (2001) Dynamic changes in gene expression along the rat epididymis. Biol Reprod 65:696–703

    Article  PubMed  CAS  Google Scholar 

  • Johnston DS, Jelinsky SA, Bang HJ, DiCandeloro P, Wilson E, Kopf GS, Turner TT (2005) The mouse epididymal transcriptome: transcriptional profiling of segmental gene expression in the epididymis. Biol Reprod 73:404–413

    Article  PubMed  CAS  Google Scholar 

  • Kastner P, Mark M, Leid M, Gansmuller A, Chin W, Grondona JM, Decimo D, Krezel W, Dierich A, Chambon P (1996) Abnormal spermatogenesis in RXR beta mutant mice. Genes Dev 10:80–92

    Article  PubMed  CAS  Google Scholar 

  • Keilhack H, Müller M, Böhmer S-A, Frank C, Weidner MK, Birchmeier W, Ligensa T, Berndt A, Kosmehl H, Günther B, Müller T, Birchmeier C, Böhmer FD (2001) Negative regulation of ros receptor tyrosine kinase signaling: an epithelial function of the SH2 domain protein tyrosine phosphatase SHP-1. J Cell Biol 152:325–334

    Article  PubMed  CAS  Google Scholar 

  • Kirchhoff C, Obermann H, Behnen M, Davies B (2006) Role of epididymal receptor HE6 in the regulation of sperm microenvironment. Mol Cell Endocrinol 250:43–48

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  PubMed  CAS  Google Scholar 

  • Le Barr DK, Blecher SR (1987) Decreased arterial vasculature of the epididymal head in XXSxr pseudomale (‘sex reversed’) mice. Acta Anat 129:123–126

    Article  PubMed  Google Scholar 

  • Le Barr DK, Blecher SR, Moger WH (1986) Androgen levels and androgenization in sex-reversed (XXSxr pseudomale) mouse: absence of initial segment of epididymis is independent of androgens. Arch Androl 17:195–205

    Article  PubMed  Google Scholar 

  • LeBarr DK, Blecher SR (1986) Epididymides of sex-reversed XX mice lack the initial segment. Dev Genet 7:109–116

    Article  PubMed  CAS  Google Scholar 

  • LeBarr DK, Blecher SR, Moger WH (1991) Development of the normal XY male and sex-reversed XXSxr pseudomale mouse epididymis. Mol Reprod Dev 28:9–17

    Article  PubMed  CAS  Google Scholar 

  • Légaré C, Sullivan R (2004) Expression and localization of c-ros oncogene along the human excurrent duct. Mol Hum Reprod 10:697–703

    Google Scholar 

  • Leung GPH, Cheung KH, Leung CT, Tsang MW, Wong PYD (2004) Regulation of epididymal principal cell function by basal cells: role of transient receptor potential (Trp) proteins and cyclooxygenase-1 (COX-1). Molec Cell Endocrinol 216:5–13

    Article  PubMed  CAS  Google Scholar 

  • Lewin LM, Fournier-Delpech S, Weissenberg R, Golan R, Cooper TG, Pholpramool C, Shochat L (1997) Effects of pivalic acid and sodium pivalate on L-carnitine concentrations in the cauda epididymidis and upon male fertility in the hamster. Reprod Fertil Develop 9:427–432

    Article  CAS  Google Scholar 

  • Martin-DeLeon PA (2006) Epididymal SPAM1 and its impact on sperm function. Mol Cell Endocrinol 250:114–121

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML, Goldstein LS, Wyrobek AJ (1985) Long-term infertility and dominant lethal mutations in male mice treated with adriamycin. Mutat Res 152:53–65

    Article  PubMed  CAS  Google Scholar 

  • Mendive F, Laurent P, Van Schoore G, Skarnes W, Pochet R, Vassart G (2006) Defective postnatal development of the male reproductive tract in LGR4 knockout mice. Dev Biol 290:421–434

    Article  PubMed  CAS  Google Scholar 

  • Miller KA, Shao M, Martin-DeLeon PA (2007) Hyalp1 in murine sperm function: evidence for unique and overlapping functions with other reproductive hyaluronidases. J Androl 28:67–76

    Article  PubMed  CAS  Google Scholar 

  • Moskovtsev SI, Jarvi K, Legare C, Sullivan R, Mullen JB (2007) Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril 88:1455–1457

    Article  PubMed  Google Scholar 

  • Nieschlag E, Henke A (2005) Hopes for male contraception. Lancet 365:554–556

    PubMed  Google Scholar 

  • O’Rand MG, Widgren EE, Wang Z, Richardson RT (2006) Eppin: an effective target for male contraception. Mol Cell Endocrinol 250:157–162

    Article  PubMed  Google Scholar 

  • Obermann H, Samalecos A, Osterhoff C, Schroder B, Heller R, Kirchhoff C (2003) HE6, a two-subunit heptahelical receptor associated with apical membranes of efferent and epididymal duct epithelia. Mol Reprod Dev 64:13–26

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki S (2004) New aspects of the blood–brain barrier transporters; its physiological roles in the central nervous system. Biol Pharm Bull 27:1489–1496

    Article  PubMed  CAS  Google Scholar 

  • Okabe M, Unno M, Harigae H, Kaku M, Okitsu Y, Sasaki T, Mizoi T, Shiiba K, Takanaga H, Terasaki T, Matsuno S, Sasaki I, Ito S, Abe T (2005) Characterization of the organic cation transporter SLC22A16: a doxorubicin importer. Biochem Biophys Res Commun 333:754–762

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF (2005) Selenoprotein P is required for mouse sperm development. Biol Reprod 73:201–211

    Article  PubMed  CAS  Google Scholar 

  • Olson GE, Winfrey VP, Nagdas SK, Hill KE, Burk RF (2007) Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J Biol Chem 282:12290–12297

    Article  PubMed  CAS  Google Scholar 

  • Park BS, El-Deeb IM, Yoo KH, Oh CH, Cho SJ, Han DK, Lee HS, Lee JY, Lee SH (2009) Design, synthesis and biological evaluation of new potent and highly selective ROS1-tyrosine kinase inhibitor. Bioorg Med Chem Lett 19:4720–4723

    Article  PubMed  CAS  Google Scholar 

  • Pastor-Soler N, Pietrement C, Breton S (2005) Role of acid/base transporters in the male reproductive tract and potential consequences of their malfunction. Physiology 20:417–428

    Article  PubMed  CAS  Google Scholar 

  • Renko K, Werner M, Renner-Muller I, Cooper TG, Yeung CH, Hollenbach B, Scharpf M, Kohrle J, Schomburg L, Schweizer U (2008) Hepatic selenoprotein P (SePP) expression restores selenium transport and prevents infertility and motor-incoordination in Sepp-knockout mice. Biochem J 409:741–749

    Article  PubMed  CAS  Google Scholar 

  • Roberts KP, Ensrud KM, Wooters JL, Nolan MA, Johnston DS, Hamilton DW (2006) Epididymal secreted protein Crisp-1 and sperm function. Mol Cell Endocrinol 250:122–127

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez CI, Stewart CL (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 312:501–508

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez CM, Labus JC, Hinton BT (2002) Organic cation/carnitine transporter, OCTN2, is differentially expressed in the adult rat epididymis. Biol Reprod 67:314–319

    Article  PubMed  Google Scholar 

  • Sai Y, Tsuji A (2004) Transporter-mediated drug delivery: recent progress and experimental approaches. Drug Discov Today 9:712–720

    Article  PubMed  CAS  Google Scholar 

  • Santi CM, MartÚnez-López P, de la Vega-Beltrán JL, Butler A, Alisio A, Darszon A, Salkoff L (2010) The SLO3 sperm-specific potassium channel plays a vital role in male fertility. FEBS Lett 584:1041–1046

    Google Scholar 

  • Shur BD, Rodeheffer C, Ensslin MA, Lyng R, Raymond A (2006) Identification of novel gamete receptors that mediate sperm adhesion to the egg coat. Mol Cell Endocrinol 250:137–148

    Article  PubMed  CAS  Google Scholar 

  • Sipilä P, Cooper TG, Yeung CH, Mustonen M, Pentinnen J, Drevet J, Huhtaniemi I, Poutanen M (2002) Epididymal dysfunction initiated by the expression of Simian Virus 40 T- antigen leads to angulated flagella and infertility in transgenic mice. Mol Cell Endocrinol 16:2603–2617

    Article  Google Scholar 

  • Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Gödecke S, Birchmeier C (1996) The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev 10:1184–1193

    Article  PubMed  CAS  Google Scholar 

  • Sullivan R, Légaré C, Villeneuve M, Foliguet B, Bissonnette F (2006) Levels of P34H, a sperm protein of epididymal origin, as a predictor of conventional in vitro fertilization outcome. Fertil Steril 85:557–559

    Article  Google Scholar 

  • Suzuki F, Nagano T (1978) Regional differentiation of cell junctions in the excurrent duct epithelium of the rat testis as revealed by freeze-fracture. Anat Rec 191:503–519

    Article  PubMed  CAS  Google Scholar 

  • Suzuki-Toyota F, Ito C, Toyama Y, Maekawa M, Yao R, Noda T, Toshimori K (2004) The coiled tail of the round-headed spermatozoa appears during epididymal passage in GOPC-deficient mice. Arch Histol Cytol 67:361–371

    Article  PubMed  Google Scholar 

  • Suzuki-Toyota F, Ito C, Toyama Y, Maekawa M, Yao R, Noda T, Iida H, Toshimori K (2007) Factors maintaining normal sperm tail structure during epididymal maturation studied in Gopc-/- mice. Biol Reprod 77:71–82

    Article  PubMed  CAS  Google Scholar 

  • Sweet DH, Miller DS, Pritchard JB (2001) Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J Biol Chem 276:41611–41619

    Article  PubMed  CAS  Google Scholar 

  • Tamai I, Ohashi R, Nezu JI, Kobayashi D, Oku A, Shimane M, Tsuji A (2000) Molecular and functional characterization of organic cation/carntine transporter family in mice. J Biol Chem 275:40064–40072

    Article  PubMed  CAS  Google Scholar 

  • Toshimori K, Kuwajima M, Yoshinaga K, Wakayama T, Shima K (1999) Dysfunctions of the epididymis as a result of primary carnitine deficiency in juvenile visceral steatosis mice. FEBS Lett 446:323–326

    Article  PubMed  CAS  Google Scholar 

  • Turner TT, Giles RG, Howards SS (1981) Effect of oestradiol valerate on the rat blood-testis and blood epididymal barriers to (3H)inulin. J Reprod Fertil 63:355–358

    Article  PubMed  CAS  Google Scholar 

  • Wagenfeld A, Yeung C-H, Lehnert W, Nieschlag E, Cooper TG (2002) Lack of glutamate transporter EAAC1 in the epididymis of infertile c-ros receptor tyrosine-kinase deficient mice. J Androl 23:772–782

    PubMed  CAS  Google Scholar 

  • Wang Z, Widgren EE, Richardson RT, O’Rand MG (2007) Eppin: a molecular strategy for male contraception. Soc Reprod Fertil Suppl 65:535–542

    PubMed  CAS  Google Scholar 

  • Wistuba J, Mittag J, Luetjens CM, Cooper TG, Yeung CH, Nieschlag E, Bauer K (2007) Male congenital hypothyroid Pax8-/- mice are infertile despite adequate treatment with thyroid hormone. J Endocrinol 192:99–109

    Article  PubMed  CAS  Google Scholar 

  • Yakushiji K, Kai S, Yamauchi M, Kuwajima M, Osada Y, Toshimori K (2006) Expression and distribution of OCTN2 in mouse epididymis and its association with obstructive azoospermia in juvenile visceral steatosis mice. Int J Urol 13:420–426

    Article  PubMed  Google Scholar 

  • Yamamoto M, Turner TT (1990) Transepithelial movement of non-polar and polar compounds in male rat reproductive tubule examined by in vivo microperifusion and in vivo micropuncture. J Urol 143:853–856

    PubMed  CAS  Google Scholar 

  • Yeung CH, Cooper TG, Bergmann M, Schulze H (1991) Organization of tubules in the human caput epididymidis and the ultrastructure of their epithelia. Am J Anat 191:261–279

    Article  PubMed  CAS  Google Scholar 

  • Yeung C-H, Sonnenberg-Riethmacher E, Cooper TG (1999) Infertile spermatozoa of c-ros tyrosine kinase receptor knockout mice show flagellar angulation and maturational defects in cell volume regulatory mechanisms. Biol Reprod 61:1062–1069

    Article  PubMed  CAS  Google Scholar 

  • Yeung CH, Wagenfeld A, Nieschlag E, Cooper TG (2000) The cause of infertility of male c-ros tyrosine kinase receptor knockout mice. Biol Reprod 63:612–618

    Article  PubMed  CAS  Google Scholar 

  • Yeung CH, Anapolski M, Cooper TG (2002a) Measurement of volume changes in mouse spermatozoa using an electronic sizing analyzer and a flow cytometer: validation and application to an infertile mouse model. J Androl 23:522–528

    PubMed  Google Scholar 

  • Yeung CH, Anapolski M, Sipilä P, Wagenfeld A, Poutanen M, Huhtaniemi I, Nieschlag E, Cooper TG (2002b) Sperm volume regulation: maturational changes in fertile and infertile transgenic mice and association with kinematics and tail angulation. Biol Reprod 67:269–275

    Article  PubMed  CAS  Google Scholar 

  • Yeung CH, Anapolski M, Setiawan I, Lang F, Cooper TG (2004a) Effects of putative epididymal osmolytes and the ion channel blocker quinine on sperm volume regulation of fertile and infertile transgenic mice. J Androl 25:216–233

    PubMed  CAS  Google Scholar 

  • Yeung CH, Breton S, Setiawan I, Xu Y, Lang F, Cooper TG (2004b) Increased luminal pH in the epididymis of infertile c-ros knockout mice and the expression of sodium-hydrogen exchangers and vacuolar proton pump H+-ATPase. Mol Reprod Dev 68:159–168

    Article  PubMed  CAS  Google Scholar 

  • Zanetti SR, Maldonado EN, Aveldaño MI (2007) Doxorubicin affects testicular lipids with long-chain (C18-C22) and very long-chain (C24-C32) polyunsaturated fatty acids. Cancer Res 67:6973–6980

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Jones R, Martin-DeLeon PA (2004) Expression and secretion of rat SPAM1(2B1 or PH-20) in the epididymis: role of testicular lumicrine factors. Matrix Biol 22:653–661

    Article  PubMed  CAS  Google Scholar 

  • Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W (2007) Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci USA 104:6852–6857

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. T. Hinton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinton, B.T., Cooper, T.G. (2010). The Epididymis as a Target for Male Contraceptive Development. In: Habenicht, UF., Aitken, R. (eds) Fertility Control. Handbook of Experimental Pharmacology, vol 198. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02062-9_8

Download citation

Publish with us

Policies and ethics