Skip to main content

Fundamental Understanding of Subgrain Boundaries

  • Chapter
  • First Online:
Crystal Growth of Si for Solar Cells

Part of the book series: Advances in Materials Research ((ADVSMATERIALS,volume 14))

Abstract

Generally, Si multicrystals, which are grown by a casting method using a crucible, contain many grain boundaries (GBs) and crystal grains with various orientations. Since the grain size has increased as a result of improving in the growth technique, instead of GBs, subgrain boundaries (sub-GBs) have become major defects acting as recombination centers for photogenerated carriers. In this chapter, the study of sub-GBs in Si multicrystals is comprehensively reviewed with the authors’ current results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

    Google Scholar 

  2. D.G. Brandon, Acta. Metall. 14, 1478 (1966)

    Google Scholar 

  3. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford Science, Oxford, 1995)

    Google Scholar 

  4. Z.J. Wang, S. Tsurekawa, K. Ikeda, T. Sekigushi, T. Watanabe, Interf. Sci. 7, 197 (1999)

    Article  CAS  Google Scholar 

  5. S. Tsurekawa, T. Watanabe, Solid State Phenomena 93, 333 (2003)

    Article  CAS  Google Scholar 

  6. J. Chen, T. Sekiguchi, D. Yang, F. Yin, K. Kido, S. Tsurekawa, J. Appl. Phys. 96, 5490 (2004)

    Article  CAS  ADS  Google Scholar 

  7. J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chikyo, D. Yang, S. Ito, F. Yin, Scripta Mater. 52, 1211 (2005)

    Article  CAS  Google Scholar 

  8. H. Sugimoto, K. Araki, M. Tajima, T. Eguchi, J. Yamaga, M. Dhamrin, K. Kamisako, T. Saitoh, J. Appl. Phys. 102, 054506 (2007)

    Article  ADS  CAS  Google Scholar 

  9. H Y. Wang, N. Usami, K. Fujiwara, K. Kutsukake, K. Nakajima, Acta Materialia 57, 3268 (2009)

    Article  CAS  Google Scholar 

  10. N. Usami, K. Kutsukake, K. Fujiwara, K. Nakajima, J. Appl. Phys. 102, 103504 (2007)

    Article  ADS  CAS  Google Scholar 

  11. K. Kutsukake, N. Usami, K. Fujiwara, K. Nakajima, J. Appl. Phys. 105, 044909 (2009)

    Article  ADS  CAS  Google Scholar 

  12. K. Fujiwara, Y. Obinata, T. Ujihara, N. Usami, G. Sazaki, K. Nakajima, J. Cryst. Growth 262, 124 (2004)

    Article  CAS  ADS  Google Scholar 

  13. K. Fujiwara, W. Pan, N. Usami, K. Sawada, M. Tokairin, Y. Nose, A. Nomura, T. Shishido, K. Nakajima, Acta Mater. 54, 3190 (2006)

    Article  CAS  Google Scholar 

  14. E. Sirtl, A. Adler, Z. Metallkunde 52, 529 (1961)

    Google Scholar 

  15. W.C. Dash, J. Appl. Phys. 27, 1193 (1956)

    Article  CAS  ADS  Google Scholar 

  16. B.L. Sopori, J. Electrochem. Soc. 131, 667 (1984)

    Article  CAS  Google Scholar 

  17. B. Ryningen, K.S. Sultana, E. Stubhaug, O. Lohne, P.C. HjemĂĄs, in Proceedings of the 22nd EU PVSEC, Milan, 2007, p. 1086

    Google Scholar 

  18. K. Ikeda, T. Sekiguchi, S. Ito, M. Takebe, M. Suezawa, J. Cryst. Growth 210, 90 (2000)

    Article  CAS  ADS  Google Scholar 

  19. H. Sugimot, M. Tajima, Jpn. J. Appl. Phys. 46, L339 (2007)

    Article  ADS  CAS  Google Scholar 

  20. T. Fuyuki, H. Kondo, T. Yamazaki, Y. Takahashi, Appl. Phys. Lett. 86, 262108 (2005)

    Article  ADS  CAS  Google Scholar 

  21. P. Würfel, T. Trupke, T. Puzzer, E. Schäffer, W. Warta, S.W. Glunz, J. Appl. Phys. 101, 123110 (2007)

    Article  ADS  CAS  Google Scholar 

  22. L.E. Murr, Mater. Sci. Eng. 51, 71 (1981)

    Article  CAS  Google Scholar 

  23. J. Gastaldi, C. Jourdan, G. Grange, Philos. Mag. 57, 971 (1987)

    ADS  Google Scholar 

  24. R.A. Varin, K.J. Kurzydlowski, K. Tangri, Mater. Sci. Eng. 85, 115 (1987)

    Article  CAS  Google Scholar 

  25. V. Bata, E.V. Pereloma, Acta Metall. 52, 657 (2004)

    CAS  Google Scholar 

  26. K. Kutsukake, N. Usami, K. Fujiwara, Y. Nose, T. Sugawara. T. Shishido, K. Nakajima, Mater. Trans. 48, 143 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kutsukake, K., Usami, N., Fujiwara, K., Nakajima, K. (2009). Fundamental Understanding of Subgrain Boundaries. In: Nakajima, K., Usami, N. (eds) Crystal Growth of Si for Solar Cells. Advances in Materials Research, vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02044-5_6

Download citation

Publish with us

Policies and ethics