Skip to main content

Measurement and Simulation of Combustion Noise emitted from Swirl Burners

  • Chapter
  • First Online:
Combustion Noise

Abstract

A major uncertaincy, when designing combustors is the influence of geometrical patterns of the design on the combustion noise generated. In order to determine the mechanisms and processes that influence the noise generation of flames with underlying swirling flows, a new burner has been designed, that offers the possibility to vary geometrical parameters. Experimental data (flow field, noise emission) have been determined for this burner. In addition, Large Eddy Simulations (LES) have been performed to study the isothermal and reacting flow of the burner. The results of the measurements show a distinct rise of the sound pressure level, obtained by changing the test setup from the isothermal to the flame configuration as well as by varying geometrical parameters, which is also resembled by the LES simulation results. A physical model has been developed from experiments and verified by the LES simulation, that explains the formation of coherent flow structures and allows to separate their contribution to the overall noise emission from ordinary turbulent noise sources. The computed isothermal and reacting flow fields have been discussed through flow visualization; the computed acoustic pressure has been compared with the experiment and it showed good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bai T, Cheng, XC, Daniel BR, Jagoda JI, Zinn BT (1993) Vortex shredding and periodic combustion processes in a Rijke type pulse combustor, Combustion Science Technology, 94, 245-258

    Article  Google Scholar 

  2. Bamberger A (2004) Vortex sound of flutes observed with Particle Image Velocimetry. ICA conference, Kyoto

    Google Scholar 

  3. Bender C, Büchner H (2005) Mechanismen der Lärmentstehung in freibrennenden und eingeschlossenen Drallflammen, VDI-Berichte: 22. Deutscher Flammentag-Verbrennung und Feuerungen, 1888, 311-317

    Google Scholar 

  4. Bender C, Büchner H 2005) Noise emissions from a premixed swirl combustor, Proceedings of Twelfth International Congress on Sound and Vibration (ICSV 12), CD-ROM.

    Google Scholar 

  5. Beer JM, Chigier NA (1972) Combustion aerodynamics, Applied Science Publisher, London

    Google Scholar 

  6. Brick H, Piscoya R, Ochmann M, Költzsch P (2005) Prediction of the Sound Radiated from Open Flames by Coupling a Large Eddy Simulation and a Kirchhoff-Method. Proc. Forum Acusticum, 85-89, Budapest

    Google Scholar 

  7. Bui TP, Schröder W, Meinke M (2007) Acoustic perturbation equations for reacting flows to compute combustion noise. International Journal of Aeroacoustics, volume 6, nr.4

    Article  Google Scholar 

  8. Bui TP, Meinke M, Schröder W (2004) A Hybrid Approach to Analyze the Acoustic Field Based on Aerothermodynamic Effects. Proc. Joint Congress CFA/DAGA’04, Strasbourg, France, 121-122

    Google Scholar 

  9. Büchner H (1992) Entstehung und theoretische Untersuchungen der Entstehungsmechanismen selbst-erregter Druckschwingungen in technischen Vormisch-Verbrennungssystemen, PhD Thesis, University of Karlsruhe

    Google Scholar 

  10. Büchner H, Lohrmann M (2003) Coherent Flow Structures in Turbulent Swirl Flames as Drivers for Combustion Instabilities. Proc. Intern. Colloquium on Combustion and Noise Control

    Google Scholar 

  11. Cabana M, Fortune V, Jordan P (2006) A look insight the Lighthill source term. 12th AIAA/CEAS Aeroacoustics Conference. Cambridge, MA, USA, AIAA-2006-2484

    Google Scholar 

  12. Catlin J B, Day W H, Goom K (1999) The Pratt & Whitney Industrial Gas Turbine Product Line, Proc. of Power Gen Conference

    Google Scholar 

  13. Colin O, Ducros F, Veynante D, Poinsot T (2000) A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids. 12, 7

    Article  Google Scholar 

  14. Duchamp de Lageneste L, Pitsch H (2001) Progress in large-eddy simulation of premixed and partially-premixed turbulent combustion. Center for Turbulence Research, Annual Research Briefs

    Google Scholar 

  15. Fröhlich J (2006) Large Eddy Simulation turbulenter Strömungen, ISBN-10 3-8351-0104-8

    Google Scholar 

  16. Gupta AK, Lilley DG, Syred N (1984) Swirl Flows, Abacus Press, Kent(U.K.)

    Google Scholar 

  17. Habisreuther P, Bender C, Petsch O, Büchner H, Bockhorn H (2004) Calculated and Measured Turbulent Noise in a Strongly Swirling Isothermal Jet, Proceedings Joint Congress CFA/DAGA, 1179-1180

    Google Scholar 

  18. Habisreuther P, Bender C, Petsch O, Buechner H, Bockhorn H (2006) Prediction of Pressure Oscillations in a Premixed Swirl Combustor Flow and Comparison to Measurements. Flow Turbulence and Combustion

    Google Scholar 

  19. Habisreuther P, Lischer T, Cai W, Krebs W, Zarzalis N (2007) Visualisation of statistically periodic coherent structures in turbulent flow using a phase locked averaging method. Progress in computational fluid dynamics

    Google Scholar 

  20. Hermesmeyer, Prade, Gruschka, Schmitz, Hoffmann and Krebs(2002) V64.3A Gas Burner Natural Gas Burner Development, Proceedings of ASME Turbo Expo

    Google Scholar 

  21. Keck O, Meier W, Stricker W, Aigner M (2002) Establishment of a confined swirling natural gas/air flame as standard flame: Temperature and species distribution from laser Raman measure-ments, Combustion Science Technology, 174(8), 117-151

    Article  Google Scholar 

  22. Kühlsheimer C, Büchner H (2002) Combustion Dynamics of Turbulent Swirling Flows, Combus-tion and Flame, 131 (1-2), 70-84

    Article  Google Scholar 

  23. Leuckel W, Fricker N(1976) The characteristics of swirl-stabilized natural gas flames. Part I: Dif-ferent flame types and their relation to flow and mixing patterns, J. Inst. Fuel, 49, 103-112

    Google Scholar 

  24. Lighthill M J (1952) On sound generated aerodynamically I. General Theory. Proc. R. Soc. A211, 564-587

    MathSciNet  Google Scholar 

  25. Lohrmann M, Büchner H (2000) Periodische Störungen im turbulenten Strömungsfeld eines Vor-misch-Drallbrenners, Chem.-Ing. Technik 72, 512-515

    Google Scholar 

  26. Pitsch H, Duchamp de Lageneste L (2002) Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proceedings of the Combustion Institute, Volume 29

    Google Scholar 

  27. Roux S, Lartique G, Poinsot T, Meier U, Berat C (2005) Studies of Mean and Unsteady Flow in a Swirled Combustor using Experiments, Acoustic Analysis and Large Eddy Simulations. Combustion and Flame (141) S.40-54

    Article  Google Scholar 

  28. Schadow K, Gutmark E, Parr T, Parr K, Wilson K, Crump J (1989) Large-scale coherent structures as drivers of combustion instability, Combustion Science Technology, 64, 167-186

    Article  Google Scholar 

  29. Schmid H P, Habisreuther P, Leuckel W (1998) A Model for Calculating Heat Release in Premixed Turbulent Flames, Combustion and Flame 113, pp. 79-91

    Article  Google Scholar 

  30. Selle L, Lartigue G, Poinsot T, Kaufmann P, Krebs W, Veynante D (2002) Large-eddy simulation of turbulent combustion for gas turbines with reduced chemistry. Center for Turbulence Research, Proceedings of the Summer Program

    Google Scholar 

  31. Smagorinsky J (1963) General circulation experiments with the primitive equations I: The basic experiment. Mon. Weather Rev. 91, 99-164

    Article  Google Scholar 

  32. Wang P, Bai XS (2005) Large eddy simulation of turbulent premixed flames using level-set G-equation. Proceedings of the Combustion Institute 30, 583-591

    Google Scholar 

  33. Zhang F, Habisreuther P, Hettel M, Bockhorn H (2008) Modeling of a Premixed Swirl-stabilized Flame Using a Turbulent Flame Speed Closure Model in LES. Flow, Turbulence and Combustion, Accepted.

    Google Scholar 

  34. Ziegler G(1991) Entflammung magerer Methan/Luft-Gemische durch kurzzeitige Bogen- und Glimmentladung. PhD Thesis, University of Stuttgart

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Council (DFG) through the Research Unit FOR 486 ”Combustion Noise”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bender, C., Zhang, F., Habisreuther, P., Büchner, H., Bockhorn, H. (2009). Measurement and Simulation of Combustion Noise emitted from Swirl Burners. In: Schwarz, A., Janicka, J. (eds) Combustion Noise. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02038-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02038-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02037-7

  • Online ISBN: 978-3-642-02038-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics