Skip to main content

Numerical RANS/URANS simulation of combustion noise

  • Chapter
  • First Online:
Combustion Noise

Abstract

In the present work, numerical simulation tools for two different combustion noise source mechanisms are presented. The generation and propagation of entropy noise is computed directly using a compressible CFD approach in combination with appropriate acoustic boundary conditions. The EntropyWave Generator (EWG) experiment is taken for validation of the proposed approach and for evaluating the acoustic sources of entropy noise. Simulation results of pressure fluctuations and their spectra for a defined standard test configuration as well as for different operating points of the EWG agree very well with the respective experimental data. Furthermore, a new numerical approach called RPM-CN approach was developed to predict broadband combustion noise. This highly efficient hybrid CFD/CAA approach can rely on a reactive RANS simulation. The RPM method is used to reconstruct stochastic broadband combustion noise sources in the time domain based on statistical turbulence quantities. Subsequently, the propagation of the combustion noise is computed by solving the acoustic perturbation equations (APE-4). The accuracy of the RPM-CN approach will be demonstrated by a good agreement of the simulation results with acoustic measurements of the DLR-A flame. The high efficiency and therefore low computational costs enable the usage of this numerical approach in the design process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bake F, Kings N, Röhle I (2008) Fundamental mechanism of entropy noise in aero-engines: experimental investigation. Journal of Engineering for Gas Turbines and Power 130:011,202–1 – 011,202–6

    Article  Google Scholar 

  2. Barlow R (1996-2004) Proceedings of the TNF Workshops - Sandia National Laboratories, http://www.ca.sandia.gov/TNF. Livermore, CA

  3. Baum M, Poinsot T, Thevenin D (1994) Accurate boundary conditions for multicomponent reactive flows. Journal of Computational Physics 116(2):247–261

    Article  Google Scholar 

  4. Bergmann V, Meier W, Wolff D, Stricker W (1998) Application of spontaneous Raman and Rayleigh Scattering and 2D LIF for the characterization of a turbulent CH4/H2/N2 jet diffusion flame. Applied Physics 66(4):489–502

    Article  Google Scholar 

  5. Bilger RW (1988) The structure of turbulent non-premixed flames. In: Twenty-Second Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, pp 475–488

    Google Scholar 

  6. Billson M, Eriksson LE, Davidson L (2003) Jet noise prediction using stochastic turbulence modeling. In: AIAA 2003-3282, Hilton Head, South Carolina

    Google Scholar 

  7. Bird R, Stewart W, Lightfoot E (1960) Transport phenomena. John Wiley & Sons

    Google Scholar 

  8. Bragg S (1963) Combustion noise. J Inst Fuel 36:12–16

    Google Scholar 

  9. Brinkmann B (2007) Numerische Simulation des hochfrequenten Effekts von Düsenrandmodifikationen. Master’s thesis, Abteilung Technische Akustik, Institut für Aerodynamik und Strömungstechnik, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR)

    Google Scholar 

  10. Bui T, Schröder W (2008) Non-isotropic acoustics of open turbulent flames. In: International conference on jets wakes and separeted flows, Berlin, Germany

    Google Scholar 

  11. Bui T, Ihme M, Meinke M, Schröder W, Pitsch H (2007) Numerical investigation of combustion noise and sound source mechanisms in a non-premixed flame using LES and APE-RF. In:AIAA 2007-3406, Rome, Italy

    Google Scholar 

  12. Bui T, Schröder W, Meinke M (2008) Numerical analysis of the acoustic field of reacting flows via acoustic perturbation equations. Computers & Fluids 37(9):1157–1169

    Article  Google Scholar 

  13. Candel S (1977) Numerical solution of conservation equations arising in linear wave theory: application to aeroacoustics. Journal of Fluid Mechanics 83(3):465–493

    Article  MATH  MathSciNet  Google Scholar 

  14. Candel S, Durox D, Ducruix S, Birbaud AL, Noiray N, Schuller T (2009) Flame dynamics and combustion noise: progress and challenges. International Journal of Aeroacoustics 8(1):1–56

    Article  Google Scholar 

  15. Chu BT, Kovasznay L (1958) Non-linear interactions in a viscous heat-conducting compressible gas. Journal of Fluid Mechanics 3:494–514

    Article  MathSciNet  Google Scholar 

  16. Delfs J, Bauer M, Ewert R, Grogger H, Lummer M, Lauke T (2007) Numerical simulation of aerodynamic noise with DLR’s aeroacoustic code PIANO - PIANO manual version 5.2. Braunschweig

    Google Scholar 

  17. Dowling A (1992) Thermoacoustics and Instabilities - In Crighton et al.: Modern methods in analytical acoustics. Springer-Verlag

    Google Scholar 

  18. Dowling A (1996) Acoustics of unstable flows - In Theoretical and Applied Mechanics. T. Tatsumi, E. Watanabe, and T. Kambe eds., Amsterdam

    Google Scholar 

  19. Ewert R (2006) Slat noise trend predictions using CAA with stochastic sources from a random particle mesh method (RPM). In: AIAA 2006-2667, Cambridge, MA

    Google Scholar 

  20. Ewert R (2007) RPM - the fast Random Particle-Mesh method to realize unsteady turbulent sound sources and velocity fields for CAA applications. In: AIAA 2007-3506, Rome, Italy

    Google Scholar 

  21. Ewert R (2008) Broadband slat noise prediction based on CAA and stochasic sound sources from a fast random particle-mesh (RPM) method. Computers & Fluids 37:369–387

    Article  Google Scholar 

  22. Ewert R, Edmunds R (2005) CAA slat noise studies applying stochastic sound sources based on solenoidal digital filters. In: AIAA 2005-2862, Monterey, CA

    Google Scholar 

  23. Ewert R, Schröder W (2003) Acoustic perturbation equations based on flow decomposition via source filtering. Journal of Computational Physics 188:365–398

    Article  MATH  MathSciNet  Google Scholar 

  24. Ewert R, Kornow O, Tester B, Powles C, Delfs J, Rose W (2008) Spectral broadening of jet engine turbine tones. In: AIAA 2008-2940

    Google Scholar 

  25. Flemming F (2006) On the simulation of noise emissions by turbulent non-premixed flames. PhD thesis, TU Darmstadt

    Google Scholar 

  26. Gerlinger P (2005) Numerische Verbrennungssimulation - Effiziente numerische Simulation turbulenter Verbrennung. Springer-Verlag

    Google Scholar 

  27. Grande E (1967) Refraction of sound by jet flow and jet temperature. In: NASA CR-840

    Google Scholar 

  28. Hassan H (1974) Scaling of combustion generated noise. J Fluid Mech 66(3):445–453

    Article  MATH  Google Scholar 

  29. Hesthaven J (1998) On the analysis and construction of perfectly matched layers for the linearized Euler equations. Journal of Computational Physics 142:129–247

    Article  MATH  MathSciNet  Google Scholar 

  30. Hu F, Hussaini M, Manthey J (1996) Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. Journal of Computational Physics 124:177–191

    Article  MATH  MathSciNet  Google Scholar 

  31. Huber A, Polifke W (2008) Impact of fuel supply impedance on combustion stability of gas turbines. In: ASME Turbo Expo, GT2008-51193, Berlin, Germany

    Google Scholar 

  32. Hwang I, Kim Y (2006) Measurement of thermo-acoustic waves induced by rapid heating of nickel sheet in open and confined spaces. International Journal of Heat and Mass Transfer 49(3):575–581

    Article  MathSciNet  Google Scholar 

  33. Ihme M, Bodony D, Pitsch H (2006) Prediction of combustion-generated noise in non-premixed turbulent jet flames using large-eddy simulation. In: AIAA 2006-2614, Cambridge, Massacusetts

    Google Scholar 

  34. Ihme M, Kaltenbacher M, Pitsch H (2006) Numerical simulation of flow- and combustion-induced sound using a hybrid LES/CAA approach. In: Proceeding of the Summer Programm 2006, Stanford, USA

    Google Scholar 

  35. Marble F, Candel S (1977) Acoustic disturbance from gas non-uniformities convected through a nozzle. Journal of Sound and Vibration 55(2):225–243

    Article  MATH  Google Scholar 

  36. Meier W, Barlow R, Chen YL (2000) Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combustion and Flame 126:326–343

    Article  Google Scholar 

  37. Morfey C (1973) Amplification of aerodynamic noise by convected flow inhomogeneities. Journal of Sound and Vibration 31(4):391–397

    Article  Google Scholar 

  38. Mühlbauer B, Ewert R, Kornow O, Noll B, Delfs J, Aigner M (2008) Simulation of combustion noise using CAA with stochastic sound sources from RANS. In: AIAA 2008-2944, Vancouver, Canada

    Google Scholar 

  39. Noll B, Schütz H, Aigner M (2001) Numerical simulation of high-frequency flow instabilities near an airblast atomizer. In: ASME Turbo Expo, GT2001-0041, New Orleans, LA

    Google Scholar 

  40. Peters N (2000) Turbulent combustion. Cambridge monographs on mechanics, Cambridge University Press

    Google Scholar 

  41. Poinsot T, Lele S (1992) Boundary conditions for direct simulations of compressible viscous flows. Journal of Computational Physics 101(1):104–129

    Article  MATH  MathSciNet  Google Scholar 

  42. Polifke W, Wall C (2002) Non-reflecting boundary conditions for acoustic transfer matrix estimation with LES. In: Proceedings of Summer Programm 2002, Stanford, USA

    Google Scholar 

  43. Pope S (2000) Turbulent flows. Cambridge University Press

    Google Scholar 

  44. Schneider C, Dreizler A, Janicka J (2003) Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combustion and Flame 135:185–190

    Article  Google Scholar 

  45. Schubert L (1972) Numerical study of sound refraction by a jet flow. I. Ray Acoustics. J Acoustical Soc Am 51(2A):439–446

    Article  Google Scholar 

  46. Selle L, Nicoud F, Poinsot T (2004) Actual impedance of nonreflecting boundary conditions: Implications for computation of resonators. AIAA Journal 42(5):958–964

    Article  Google Scholar 

  47. Singh K, Frankel S, Gore J (2004) Study of spectral noise emissions from standard turbulent nonpremixed flames. AIAA Journal 42(5):931–936

    Article  Google Scholar 

  48. Strahle W (1972) On combustion generated noise. Journal of Sound and Vibration 23(1):113–125

    Article  Google Scholar 

  49. Strahle W (1975) A review of combustion generated noise. Prog Astronaut Aeronaut 37:229–248

    Google Scholar 

  50. Tam C, Auriault L (1999) Jet mixing noise from fine-scale turbulence. AIAA Journal 37(2):145–153

    Article  Google Scholar 

  51. Tam C, Webb J (1993) Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics 107:262–281

    Article  MATH  MathSciNet  Google Scholar 

  52. Wagner C, Hüttl T, Sagaut P (2007) Large-eddy simulation for acoustics. Cambridge University Press, Cambridge

    Google Scholar 

  53. Warnatz J, Maas U, Dibble R (2001) Verbrennung, 3rd edn. Springer-Verlag, Berlin

    Google Scholar 

  54. Widenhorn A, Noll B, Aigner M (2006) Accurate boundary conditions for the numerical simulation of thermoacoustic phenomena in gas-turbine combustion chambers. In: ASME Turbo Expo, GT2006-90441, Barcelona, Spain

    Google Scholar 

  55. Widenhorn A, Noll B, Aigner M (2008) Impedance boundary conditions for the numerical simulation of gas turbine combustion systems. In: ASME Turbo Expo, GT2008-50445, Berlin, Germany

    Google Scholar 

  56. Zimont V (2000) Gas premixed combustion at high turbulence. Turbulent flame closure combustion model. Experimental Thermal and Fluid Science 21:179–186

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation (DFG) through the Research Unit FOR 486 ”Combustion Noise”. We like to thank Dr.-Ing. Friedrich Bake and Dr.-Ing. Ingo Röhle of the DLR Institute of Propulsion Technology, Berlin, Germany, for providing excellent measurements and Dipl.-Ing. Axel Widenhorn of the DLR Institute of Combustion Technology, Stuttgart, Germany, for very helpful discussions concerning the application of non-reflecting boundary conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Mühlbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mühlbauer, B., Noll, B., Ewert, R., Kornow, O., Aigner, M. (2009). Numerical RANS/URANS simulation of combustion noise. In: Schwarz, A., Janicka, J. (eds) Combustion Noise. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02038-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02038-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02037-7

  • Online ISBN: 978-3-642-02038-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics