Skip to main content

Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies

  • Chapter
  • First Online:
Molecular Mechanisms of Bacterial Infection via the Gut

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

Vibrio cholerae is a curved Gram-negative rod that causes the diarrheal disease cholera. One hundred and twenty five years of study of V. cholerae microbiology have made this lethal pathogen arguably the most well-understood non-invasive mucosal pathogen. Over the past 25 years, modern molecular techniques have permitted the identification of many genes and cellular processes that are critical for V. cholerae colonization of the gastrointestinal tract. Review of the literature reveals that there are two classes of genes that influence V. cholerae colonization of the suckling mouse intestine, the most commonly used animal model to study V. cholerae pathogenesis. Inactivation of one class of genes results in profound attenuation of V. cholerae intestinal colonization, whereas inactivation of the other class of genes results in only moderate colonization defects. The latter class of genes suggests that V. cholerae may colonize several intestinal niches that impose distinct requirements and biological challenges, thus raising the possibility that there is physiologic heterogeneity among the infecting population. Efficient V. cholerae intestinal colonization and subsequent dissemination to the environment appears to require temporally ordered expression of sets of genes during the course of infection. Key challenges for future investigations of V. cholerae pathogenicity will be to assess the degree of heterogeneity in the infecting population, whether such heterogeneity has functional significance, and if stochastic processes contribute to generation of heterogeneity in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Angelichio MJ, Spector J, Waldor MK, Camilli A (1999) Vibrio cholerae intestinal population dynamics in the suckling mouse model of infection. Infect Immun 67:3733–3739

    CAS  PubMed  Google Scholar 

  • Baselski VS, Medina RA, Parker CD (1979) In vivo and in vitro characterization of virulence-deficient mutants of Vibrio cholerae. Infect Immun 24:111–116

    CAS  PubMed  Google Scholar 

  • Bik EM, Bunschoten AE, Gouw RD, Mooi FR (1995) Genesis of the novel epidemic Vibrio cholerae O139 strain: evidence for horizontal transfer of genes involved in polysaccharide synthesis. Embo J 14:209–216

    CAS  PubMed  Google Scholar 

  • Bina J, Zhu J, Dziejman M, Faruque S, Calderwood S, Mekalanos J (2003) ToxR regulon of Vibrio cholerae and its expression in vibrios shed by cholera patients. Proc Natl Acad Sci USA 100:2801–2806

    CAS  PubMed  Google Scholar 

  • Bina JE, Mekalanos JJ (2001) Vibrio cholerae tolC is required for bile resistance and colonization. Infect Immun 69:4681–4685

    CAS  PubMed  Google Scholar 

  • Bina XR, Provenzano D, Nguyen N, Bina JE (2008) Vibrio cholerae RND family efflux systems are required for antimicrobial resistance, optimal virulence factor production, and colonization of the infant mouse small intestine. Infect Immun 76:3595–3605

    CAS  PubMed  Google Scholar 

  • Brennan RG, Link TM (2007) Hfq structure, function and ligand binding. Curr Opin Microbiol. 10:125–133

    CAS  PubMed  Google Scholar 

  • Butler SM, Camilli A (2004) Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc Natl Acad Sci USA 101:5018–5023

    CAS  PubMed  Google Scholar 

  • Butler SM, Camilli A (2005) Going against the grain: chemotaxis and infection in Vibrio cholerae. Nat Rev Microbiol 3:611–620

    CAS  PubMed  Google Scholar 

  • Butler SM, Nelson EJ, Chowdhury N, Faruque SM, Calderwood SB, Camilli A (2006) Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol 60:417–426

    CAS  PubMed  Google Scholar 

  • Butterton JR, Ryan ET, Shahin RA, Calderwood SB (1996) Development of a germfree mouse model of Vibrio cholerae infection. Infect Immun 64:4373–4377

    CAS  PubMed  Google Scholar 

  • Carroll PA, Tashima KT, Rogers MB, DiRita VJ, Calderwood SB (1997) Phase variation in tcpH modulates expression of the ToxR regulon in Vibrio cholerae. Mol Microbiol 25:1099–1111

    CAS  PubMed  Google Scholar 

  • Chatterjee R, Nag S, Chaudhuri K (2008) Identification of a new RTX-like gene cluster in Vibrio cholerae. FEMS Microbiol Lett 284:165–171

    CAS  PubMed  Google Scholar 

  • Chen HC, Reyes V, Fresh JW (1971) An electron microscopic study of the small intestine in human cholera. Virchows Arch B Cell Pathol 7:236–259

    CAS  PubMed  Google Scholar 

  • Chiang SL, Mekalanos JJ (1998) Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol 27:797–805

    CAS  PubMed  Google Scholar 

  • Chiang SL, Mekalanos JJ (1999) rfb mutations in Vibrio cholerae do not affect surface production of toxin-coregulated pili but still inhibit intestinal colonization. Infect Immun 67:976–980

    CAS  PubMed  Google Scholar 

  • Chiang SL, Taylor RK, Koomey M, Mekalanos JJ (1995) Single amino acid substitutions in the N-terminus of Vibrio cholerae TcpA affect colonization, autoagglutination, and serum resistance. Mol Microbiol 17:1133–1142

    CAS  PubMed  Google Scholar 

  • Cholera working group (1993) Large epidemic of cholera-like disease in Bangladesh caused by Vibrio cholerae O139 synonym Bengal. Cholera Working Group, International Centre for Diarrhoeal Diseases Research, Bangladesh. Lancet 342:387–390

    Google Scholar 

  • De SN (1959) Enterotoxicity of bacteria-free culture-filtrate of Vibrio cholerae. Nature 183: 1533–1534

    CAS  PubMed  Google Scholar 

  • Ding Y, Davis BM, Waldor MK (2004) Hfq is essential for Vibrio cholerae virulence and downregulates sigma expression. Mol Microbiol 53:345–354

    CAS  PubMed  Google Scholar 

  • Faruque SM, Mekalanos JJ (2003) Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11:505–510

    CAS  PubMed  Google Scholar 

  • Faruque SM, Nair GB, Mekalanos JJ (2004) Genetics of stress adaptation and virulence in toxigenic Vibrio cholerae. DNA Cell Biol 23:723–741

    CAS  PubMed  Google Scholar 

  • Finkelstein RA, Boesman-Finkelstein M, Chang Y, Hase CC (1992) Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun 60:472–478

    CAS  PubMed  Google Scholar 

  • Franzon VL, Barker A, Manning PA (1993) Nucleotide sequence encoding the mannose-fucose-resistant hemagglutinin of Vibrio cholerae O1 and construction of a mutant. Infect Immun 61:3032–3037

    CAS  PubMed  Google Scholar 

  • Fresh JW, Versage PM, Reyes V (1964) Intestinal morphology in human and experimental cholera. Arch Pathol. 77:529–537

    CAS  PubMed  Google Scholar 

  • Freter R, O'Brien PC (1981a) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: fitness and virulence of nonchemotactic Vibrio cholerae mutants in infant mice. Infect Immun 34:222–233

    CAS  PubMed  Google Scholar 

  • Freter R, O'Brien PC (1981b) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: chemotactic responses of Vibrio cholerae and description of motile nonchemotactic mutants. Infect Immun 34:215–221

    CAS  PubMed  Google Scholar 

  • Freter R, O'Brien PC, Macsai MS (1981) Role of chemotaxis in the association of motile bacteria with intestinal mucosa: in vivo studies. Infect Immun 34:234–240

    CAS  PubMed  Google Scholar 

  • Fullner KJ, Mekalanos JJ (1999) Genetic characterization of a new type IV-A pilus gene cluster found in both classical and El Tor biotypes of Vibrio cholerae. Infect Immun 67:1393–1404

    CAS  PubMed  Google Scholar 

  • Gangarosa EF, Beisel WR, Benyajati C, Sprinz H, Piyaratn P (1960) The nature of the gastrointestinal lesion in asiatic cholera and its relation to pathogenesis: a biopsy study. Am J Trop Med Hyg 9:125–135

    CAS  PubMed  Google Scholar 

  • Gardel CL, Mekalanos JJ (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64:2246–2255

    CAS  PubMed  Google Scholar 

  • Greenough WB 3rd (2004) The human, societal, and scientific legacy of cholera. J Clin Invest. 113:334–339

    CAS  PubMed  Google Scholar 

  • Guentzel MN, Berry LJ (1975) Motility as a virulence factor for Vibrio cholerae. Infect Immun 11:890–897

    CAS  PubMed  Google Scholar 

  • Hase CC, Mekalanos JJ (1999) Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 96:3183–3187

    CAS  PubMed  Google Scholar 

  • Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ et al (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406:477–483

    CAS  PubMed  Google Scholar 

  • Herrington DA, Hall RH, Losonsky G, Mekalanos JJ, Taylor RK, Levine MM (1988) Toxin, toxin-coregulated pili, and the toxR regulon are essential for Vibrio cholerae pathogenesis in humans. J Exp Med 168:1487–1492

    CAS  PubMed  Google Scholar 

  • Higgins DA, Pomianek ME, Kraml CM, Taylor RK, Semmelhack MF, Bassler BL (2007) The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450:883–886

    CAS  PubMed  Google Scholar 

  • Howard-Jones N (1984) Robert Koch and the cholera vibrio: a centenary. Br Med J (Clin Res Ed). 288:379–381

    CAS  Google Scholar 

  • Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity. Proc Natl Acad Sci USA 103:14542–14547

    CAS  PubMed  Google Scholar 

  • Ichinose Y, Yamamoto K, Nakasone N, Tanabe MJ, Takeda T, Miwatani T, Iwanaga M (1987) Enterotoxicity of El Tor-like hemolysin of non-O1 Vibrio cholerae. Infect Immun 55:1090–1093

    CAS  PubMed  Google Scholar 

  • Iredell JR, Stroeher UH, Ward HM, Manning PA (1998) Lipopolysaccharide O-antigen expression and the effect of its absence on virulence in rfb mutants of Vibrio cholerae O1. FEMS Immunol Med Microbiol 20:45–54

    CAS  PubMed  Google Scholar 

  • Joelsson A, Liu Z, Zhu J (2006) Genetic and phenotypic diversity of quorum-sensing systems in clinical and environmental isolates of Vibrio cholerae. Infect Immun 74:1141–1147

    CAS  PubMed  Google Scholar 

  • Kaper JB, Morris JG Jr, Levine MM (1995) Cholera. Clin Microbiol Rev 8:48–86

    CAS  PubMed  Google Scholar 

  • Karaolis DK, Somara S, Maneval DR Jr, Johnson JA, Kaper JB (1999) A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–379

    CAS  PubMed  Google Scholar 

  • Kavic SM, Frehm EJ, Segal AS (1999) Case studies in cholera: lessons in medical history and science. Yale J Biol Med 72:393–408

    CAS  PubMed  Google Scholar 

  • Kirn TJ, Taylor RK (2005) TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect Immun 73:4461–4470

    CAS  PubMed  Google Scholar 

  • Kirn TJ, Bose N, Taylor RK (2003) Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae. Mol Microbiol 49:81–92

    CAS  PubMed  Google Scholar 

  • Kirn TJ, Lafferty MJ, Sandoe CM, Taylor RK (2000) Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae. Mol Microbiol 35:896–910

    CAS  PubMed  Google Scholar 

  • Klose KE, Mekalanos JJ (1998) Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol 28:501–520

    CAS  PubMed  Google Scholar 

  • Koshi R, Chandy G, Mathan M, Mathan VI (2003) Vascular changes in duodenal mucosa in shigellosis and cholera. Clin Anat 16:317–327

    PubMed  Google Scholar 

  • Kovach ME, Shaffer MD, Peterson KM (1996) A putative integrase gene defines the distal end of a large cluster of ToxR-regulated colonization genes in Vibrio cholerae. Microbiology 142(Pt 8):2165–2174

    CAS  PubMed  Google Scholar 

  • Kovacikova G, Skorupski K (2002) The alternative sigma factor sigma(E) plays an important role in intestinal survival and virulence in Vibrio cholerae. Infect Immun 70:5355–5362

    CAS  PubMed  Google Scholar 

  • Kumar KK, Srivastava R, Sinha VB, Michalski J, Kaper JB, Srivastava BS (1994) recA mutations reduce adherence and colonization by classical and El Tor strains of Vibrio cholerae. Microbiology 140(Pt 5):1217–1222

    PubMed  Google Scholar 

  • Larocque RC, Harris JB, Dziejman M, Li X, Khan AI, Faruque AS et al (2005) Transcriptional profiling of Vibrio cholerae recovered directly from patient specimens during early and late stages of human infection. Infect Immun 73:4488–4493

    CAS  PubMed  Google Scholar 

  • Lauriano CM, Ghosh C, Correa NE, Klose KE (2004) The sodium-driven flagellar motor controls exopolysaccharide expression in Vibrio cholerae. J Bacteriol 186:4864–4874

    CAS  PubMed  Google Scholar 

  • Lee SH, Butler SM, Camilli A (2001) Selection for in vivo regulators of bacterial virulence. Proc Natl Acad Sci USA 98:6889–6894

    CAS  PubMed  Google Scholar 

  • Lee SH, Hava DL, Waldor MK, Camilli A (1999) Regulation and temporal expression patterns of Vibrio cholerae virulence genes during infection. Cell 99:625–634

    CAS  PubMed  Google Scholar 

  • Lenz DH, Mok KC, Lilley BN, Kulkarni RV, Wingreen NS, Bassler BL (2004) The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae. Cell 118:69–82

    CAS  PubMed  Google Scholar 

  • Levine MM, Kaper JB, Black RE, Clements ML (1983) New knowledge on pathogenesis of bacterial enteric infections as applied to vaccine development. Microbiol Rev 47:510–550

    CAS  PubMed  Google Scholar 

  • Liu Z, Miyashiro T, Tsou A, Hsiao A, Goulian M, Zhu J (2008) Mucosal penetration primes Vibrio cholerae for host colonization by repressing quorum sensing. Proc Natl Acad Sci USA 105:9769–9774

    CAS  PubMed  Google Scholar 

  • Lombardo MJ, Michalski J, Martinez-Wilson H, Morin C, Hilton T, Osorio CG et al (2007) An in vivo expression technology screen for Vibrio cholerae genes expressed in human volunteers. Proc Natl Acad Sci USA 104:18229–18234

    CAS  PubMed  Google Scholar 

  • Lopez AL, Clemens JD, Deen J, Jodar L (2008) Cholera vaccines for the developing world. Hum Vaccin 4:165–169

    PubMed  Google Scholar 

  • Losick R, Desplan C (2008) Stochasticity and cell fate. Science 320:65–68

    CAS  PubMed  Google Scholar 

  • Majdalani N, Vanderpool CK, Gottesman S (2005) Bacterial small RNA regulators. Crit Rev Biochem Mol Biol 40:93–113

    CAS  PubMed  Google Scholar 

  • Marsh JW, Taylor RK (1998) Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation. Mol Microbiol 29:1481–1492

    CAS  PubMed  Google Scholar 

  • Mathan MM, Chandy G, Mathan VI (1995) Ultrastructural changes in the upper small intestinal mucosa in patients with cholera. Gastroenterology 109:422–430

    CAS  PubMed  Google Scholar 

  • Matson JS, Withey JH, DiRita VJ (2007) Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75:5542–5549

    CAS  PubMed  Google Scholar 

  • Merrell DS, Hava DL, Camilli A (2002a) Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol 43:1471–1491

    CAS  PubMed  Google Scholar 

  • Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, Cohen MB et al (2002b) Host-induced epidemic spread of the cholera bacterium. Nature 417:642–645

    CAS  PubMed  Google Scholar 

  • Metchnikoff E (1894) Recherches sur le cholera et les vibrions. Receptivite des jeunes lapins pour le cholera intestinal. Ann Inst Pasteur (Paris) 8:557

    Google Scholar 

  • Mey AR, Wyckoff EE, Kanukurthy V, Fisher CR, Payne SM (2005) Iron and fur regulation in Vibrio cholerae and the role of fur in virulence. Infect Immun 73:8167–8178

    CAS  PubMed  Google Scholar 

  • Miller MB, Skorupski K, Lenz DH, Taylor RK, Bassler BL (2002) Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110:303–314

    CAS  PubMed  Google Scholar 

  • Morris DC, Peng F, Barker JR, Klose KE (2008) Lipidation of an FlrC-dependent protein is required for enhanced intestinal colonization by Vibrio cholerae. J Bacteriol. 190:231–239

    CAS  PubMed  Google Scholar 

  • Nandi B, Nandy RK, Sarkar A, Ghose AC (2005) Structural features, properties and regulation of the outer-membrane protein W (OmpW) of Vibrio cholerae. Microbiology 151:2975–2986

    CAS  PubMed  Google Scholar 

  • Nelson ET, Clements JD, Finkelstein RA (1976) Vibrio cholerae adherence and colonization in experimental cholera: electron microscopic studies. Infect Immun 14:527–547

    CAS  PubMed  Google Scholar 

  • Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, Reidl J (2001) Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69:435–445

    CAS  PubMed  Google Scholar 

  • Nesper J, Schild S, Lauriano CM, Kraiss A, Klose KE, Reidl J (2002) Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization. Infect Immun 70:5990–5996

    CAS  PubMed  Google Scholar 

  • Nielsen AT, Dolganov NA, Otto G, Miller MC, Wu CY, Schoolnik GK (2006) RpoS controls the Vibrio cholerae mucosal escape response. PLoS Pathog 2:e109

    PubMed  Google Scholar 

  • Okada K, Iida T, Kita-Tsukamoto K, Honda T (2005) Vibrios commonly possess two chromosomes. J Bacteriol. 187:752–757

    CAS  PubMed  Google Scholar 

  • Olivier V, Salzman NH, Satchell KJ (2007) Prolonged colonization of mice by Vibrio cholerae El Tor O1 depends on accessory toxins. Infect Immun 75:5043–5051

    CAS  PubMed  Google Scholar 

  • Osorio CG, Martinez-Wilson H, Camilli A (2004) The ompU Paralogue vca1008 is required for virulence of Vibrio cholerae. J Bacteriol. 186:5167–5171

    CAS  PubMed  Google Scholar 

  • Osorio CG, Crawford JA, Michalski J, Martinez-Wilson H, Kaper JB, Camilli A (2005) Second-generation recombination-based in vivo expression technology for large-scale screening for Vibrio cholerae genes induced during infection of the mouse small intestine. Infect Immun 73:972–980

    CAS  PubMed  Google Scholar 

  • Parsot C, Taxman E, Mekalanos JJ (1991) ToxR regulates the production of lipoproteins and the expression of serum resistance in Vibrio cholerae. Proc Natl Acad Sci USA 88:1641–1645

    CAS  PubMed  Google Scholar 

  • Peterson KM (2002) Expression of Vibrio cholerae virulence genes in response to environmental signals. Curr Issues Intest Microbiol 3:29–38

    CAS  PubMed  Google Scholar 

  • Peterson KM, Mekalanos JJ (1988) Characterization of the Vibrio cholerae ToxR regulon: identification of novel genes involved in intestinal colonization. Infect Immun 56:2822–2829

    CAS  PubMed  Google Scholar 

  • Pollitzer R (1959) Cholera. World Health Organization, Geneva

    Google Scholar 

  • Pruzzo C, Vezzulli L, Colwell RR (2008) Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol 10:1400–1410

    CAS  PubMed  Google Scholar 

  • Qadri F, Bhuiyan TR, Dutta KK, Raqib R, Alam MS, Alam NH et al (2004) Acute dehydrating disease caused by Vibrio cholerae serogroups O1 and O139 induce increases in innate cells and inflammatory mediators at the mucosal surface of the gut. Gut. 53:62–69

    CAS  PubMed  Google Scholar 

  • Richardson K (1991) Roles of motility and flagellar structure in pathogenicity of Vibrio cholerae: analysis of motility mutants in three animal models. Infect Immun 59:2727–2736

    CAS  PubMed  Google Scholar 

  • Sanchez J, Holmgren J (2008) Cholera toxin structure, gene regulation and pathophysiological and immunological aspects. Cell Mol Life Sci 65:1347–1360

    CAS  PubMed  Google Scholar 

  • Sawabe T, Kita-Tsukamoto K, Thompson FL (2007) Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. J Bacteriol. 189:7932–7936

    CAS  PubMed  Google Scholar 

  • Schild S, Bishop A, Camilli A (2008) Ins and outs of Vibrio cholerae. Microbe. 3:131–136

    Google Scholar 

  • Schild S, Tamayo R, Nelson EJ, Qadri F, Calderwood SB, Camilli A (2007) Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe 2:264–277

    CAS  PubMed  Google Scholar 

  • Silva AJ, Leitch GJ, Camilli A, Benitez JA (2006) Contribution of hemagglutinin/protease and motility to the pathogenesis of El Tor biotype cholera. Infect Immun 74:2072–2079

    CAS  PubMed  Google Scholar 

  • Silva TM, Schleupner MA, Tacket CO, Steiner TS, Kaper JB, Edelman R, Guerrant R (1996) New evidence for an inflammatory component in diarrhea caused by selected new, live attenuated cholera vaccines and by El Tor and O139 Vibrio cholerae. Infect Immun 64:2362–2364

    CAS  PubMed  Google Scholar 

  • Slamti L, Livny J, Waldor MK (2007) Global gene expression and phenotypic analysis of a Vibrio cholerae rpoH deletion mutant. J Bacteriol. 189:351–362

    CAS  PubMed  Google Scholar 

  • Sprinz H, Sribhibhadh R, Gangarosa EJ, Benyajati C, Kundel D, Halstead S (1962) Biopsy of small bowel of Thai people. With special reference to recovery from Asiatic cholera and to an intestinal malabsorption syndrome. Am J Clin Pathol 38:43–51

    CAS  PubMed  Google Scholar 

  • Stoll BJ, Glass RI, Banu H, Huq MI, Khan MU, Ahmed M (1983) Value of stool examination in patients with diarrhoea. Br Med J (Clin Res Ed) 286:2037–2040

    CAS  Google Scholar 

  • Stroeher UH, Jedani KE, Manning PA (1998) Genetic organization of the regions associated with surface polysaccharide synthesis in Vibrio cholerae O1, O139 and Vibrio anguillarum O1 and O2: a review. Gene 223:269–282

    CAS  PubMed  Google Scholar 

  • Svenningsen SL, Waters CM, Bassler BL (2008) A negative feedback loop involving small RNAs accelerates Vibrio cholerae's transition out of quorum-sensing mode. Genes Dev 22:226–238

    CAS  PubMed  Google Scholar 

  • Tagomori K, Iida T, Honda T (2002) Comparison of genome structures of vibrios, bacteria possessing two chromosomes. J Bacteriol 184:4351–4358

    CAS  PubMed  Google Scholar 

  • Taylor RK, Miller VL, Furlong DB, Mekalanos JJ (1987) Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. Proc Natl Acad Sci USA 84:2833–2837

    CAS  PubMed  Google Scholar 

  • Trucksis M, Michalski J, Deng YK, Kaper JB (1998) The Vibrio cholerae genome contains two unique circular chromosomes. Proc Natl Acad Sci USA 95:14464–14469

    CAS  PubMed  Google Scholar 

  • Trucksis M, Galen JE, Michalski J, Fasano A, Kaper JB (1993) Accessory cholera enterotoxin (Ace), the third toxin of a Vibrio cholerae virulence cassette. Proc Natl Acad Sci USA 90:5267–5271

    CAS  PubMed  Google Scholar 

  • Ujiiye A, Nakatomi M, Utsunomiya A, Mitsui K, Sogame S, Iwanaga M, Kobari K (1968) Experimental cholera in mice. I. First report on the oral infection. Trop Med 10:65–71

    Google Scholar 

  • Waldor MK, Mekalanos JJ (1994a) Vibrio cholerae O139 specific gene sequences. Lancet 343:1366

    CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1994b) ToxR regulates virulence gene expression in non-O1 strains of Vibrio cholerae that cause epidemic cholera. Infect Immun 62:72–78

    CAS  PubMed  Google Scholar 

  • Waldor MK, Mekalanos JJ (1996) Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–1914

    CAS  PubMed  Google Scholar 

  • Waldor MK, Colwell R, Mekalanos JJ (1994) The Vibrio cholerae O139 serogroup antigen includes an O-antigen capsule and lipopolysaccharide virulence determinants. Proc Natl Acad Sci USA 91:11388–11392

    CAS  PubMed  Google Scholar 

  • Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235

    CAS  PubMed  Google Scholar 

  • Woodward WE, Mosley WH (1972) The spectrum of cholera in rural Bangladesh. II. Comparison of El Tor Ogawa and classical Inaba infection. Am J Epidemiol 96:342–351

    CAS  PubMed  Google Scholar 

  • Xu Q, Dziejman M, Mekalanos JJ (2003) Determination of the transcriptome of Vibrio cholerae during intraintestinal growth and midexponential phase in vitro. Proc Natl Acad Sci USA 100:1286–1291

    CAS  PubMed  Google Scholar 

  • Yamai S, Okitsu T, Shimada T, Katsube Y (1997) Distribution of serogroups of Vibrio cholerae non-O1 non-O139 with specific reference to their ability to produce cholera toxin, and addition of novel serogroups. Kansenshogaku Zasshi 71:1037–1045

    CAS  PubMed  Google Scholar 

  • Yamaichi Y, Iida T, Park KS, Yamamoto K, Honda T (1999) Physical and genetic map of the genome of Vibrio parahaemolyticus: presence of two chromosomes in Vibrio species. Mol Microbiol 31:1513–1521

    CAS  PubMed  Google Scholar 

  • Yancey RJ, Willis DL, Berry LJ (1978) Role of motility in experimental cholera in adult rabbits. Infect Immun 22:387–392

    CAS  PubMed  Google Scholar 

  • Yoon SS, Mekalanos JJ (2006) 2, 3-butanediol synthesis and the emergence of the Vibrio cholerae El Tor biotype. Infect Immun 74:6547–6556

    CAS  PubMed  Google Scholar 

  • Zhang D, Rajanna C, Sun W, Karaolis DK (2003) Analysis of the Vibrio pathogenicity island-encoded Mop protein suggests a pleiotropic role in the virulence of epidemic Vibrio cholerae. FEMS Microbiol Lett 225:311–318

    CAS  PubMed  Google Scholar 

  • Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci USA 99:3129–3134

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Brigid Davis for her comments on this manuscript and Leyla Slamti for her translation of Metchnikoff’s paper. We are grateful for support from HHMI and NIH (AI-42347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew K. Waldor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ritchie, J.M., Waldor, M.K. (2009). Vibrio cholerae Interactions with the Gastrointestinal Tract: Lessons from Animal Studies. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_2

Download citation

Publish with us

Policies and ethics