Skip to main content

Using Gene Expression Modeling to Determine Biological Relevance of Putative Regulatory Networks

  • Conference paper
Bioinformatics Research and Applications (ISBRA 2009)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5542))

Included in the following conference series:

  • 723 Accesses

Abstract

Identifying gene regulatory networks from high-throughput gene expression data is one of the most important goals of bioinformatics, but it remains difficult to define what makes a ‘good’ network. Here we introduce Expression Modeling Networks (EMN), in which we propose that a ‘good’ regulatory network must be a functioning tool that predicts biological behavior. Interaction strengths between a regulator and target gene are calculated by fitting observed expression data to the EMN. ‘Better’ EMNs should have superior ability to model previously observed expression data. In this study, we generate regulatory networks by three methods using Bayesian network approach from an oxidative stress gene expression time course experiments. We show that better networks, identified by percentage of interactions between genes sharing at least one GO-Slim Biological Process terms, do indeed generate more predictive EMN’s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weaver, D., Workman, C., Stormo, G.: Modeling regulatory networks with weight matrices. In: Pacific Symp. Biocomp., vol. 99(4), pp. 112–123 (1999)

    Google Scholar 

  2. Butte, A.J., Tamayo, P., Slonim, D., Golub, T.R., Kohane, I.S.: Discovering functional relationships between RNA expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences of the United States of America 97(22), 12182–12186 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Elo, L.L., Jarvenpaa, H., Oresic, M., Lahesmaa, R., Aittokallio, T.: Systematic construction of gene coexpression networks with applications to human T helper cell differentiation process. Bioinformatics 23(16), 2096–2103 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Huttenhower, C., Flamholz, A., Landis, J., Sahi, S., Myers, C., Olszewski, K., Hibbs, M., Siemers, N., Troyanskaya, O., Coller, H.: Nearest Neighbor Networks: clustering expression data based on gene neighborhoods. BMC Bioinformatics 8(1), 250 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  5. Margolin, A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Favera, R., Califano, A.: ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks in a Mammalian Cellular Context. BMC Bioinformatics 7(suppl. 1), S7 (2006)

    Article  Google Scholar 

  6. Basso, K., Margolin, A.A., Stolovitzky, G., Klein, U., Dalla-Favera, R., Califano, A.: Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37(4), 382 (2005)

    Article  CAS  PubMed  Google Scholar 

  7. Chen, G., Larsen, P., Almasri, E., Dai, Y.: Rank-based edge reconstruction for scale-free genetic regulatory networks. BMC Bioinformatics 9(1), 75 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601 (2000)

    Article  CAS  PubMed  Google Scholar 

  9. Almasri, E., Larsen, P., Chen, G., Dai, Y.: Incorporating literature knowledge in Bayesian network for inferring gene networks with gene expression data. In: Măndoiu, I., Sunderraman, R., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI), vol. 4983, pp. 184–195. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S., Young, R.A.: Combining location and expression data for principled discovery of genetic regulatory network models. In: Pac. Symp. Biocomput., pp. 437–449 (2002)

    Google Scholar 

  11. Imoto, S., Higuchi, T., Goto, T., Tashiro, K., Kuhara, S., Miyano, S.: Combining Microarrays and Biological Knowledge for Estimating Gene Networks via Bayesian Networks. In: Proceedings of the IEEE Computer Society Conference on Bioinformatics. IEEE Computer Society, Los Alamitos (2003)

    Google Scholar 

  12. Le Phillip, P., Bahl, A., Unga, L.H.: Using prior knowledge to improve genetic network reconstruction from microarray data. Silico Biology 4, 335–353 (2004)

    Google Scholar 

  13. Kulkarnia, K., Larsen, P., Linninger, A.A.: Assessing chronic liver toxicity based on relative gene expression data. Journal of Theoretical Biology 254(2), 308–318 (2008)

    Article  Google Scholar 

  14. R Development Core Team: R: A Language and Environment for Statistical Computing, http://www.R-project.org

  15. Gasch, A.P., Spellman, P.T., Kao, C.M., Carmel-Harel, O., Eisen, M.B., Storz, G., Botstein, D., Brown, P.O.: Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell. 11, 4241–4257 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Larsen, P., Almasri, E., Chen, G., Dai, Y.: A statistical method to incorporate biological knowledge for generating testable novel gene regulatory interactions from microarray experiments. BMC Bioinformatics 8, 317 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  17. GO Slim Mapper, http://db.yeastgenome.org/cgi-in/GO/goTermMapper

  18. BANJO, http://www.cs.duke.edu/~amink/software/banjo/

  19. Herskovits, E., Cooper, G.: Algorithms for Bayesian belief-network precomputation. Methods Inf. Med. 30(2), 81–89 (1991)

    CAS  PubMed  Google Scholar 

  20. Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., et al.: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Larsen, P., Dai, Y. (2009). Using Gene Expression Modeling to Determine Biological Relevance of Putative Regulatory Networks. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds) Bioinformatics Research and Applications. ISBRA 2009. Lecture Notes in Computer Science(), vol 5542. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01551-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01551-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01550-2

  • Online ISBN: 978-3-642-01551-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics