Skip to main content

Thrombusformation im Blutfluss

  • Chapter
Hämostaseologie
  • 4517 Accesses

Zusammenfassung

Physiologischer Schutz gegen Blutung, sogenannte Hämostase, wird durch Plättchenadhäsion und -aggregation an der verletzten Gefäßwand sichergestellt — das Leck wird abgedichtet. Thrombose ist eine hämostatische Reaktion, die fehlgeleitet an einer krankhaft veränderten Gefäßwand abläuft — das Gefäßlumen wird verlegt. Durch den hämodynamischen Vorgang der erythrozytären Axialmigration entsteht im strömenden Blut eine wandnahe Plasmagrenzschicht mit darin angereicherten Thrombozyten, die das Endothel auf Defekte absuchen. Normalerweise nicht im Blut vorhandene Strukturen der Gefäßwand, vor allem Kollagen Typ I und III, triggern das Anhaften der Thrombozyten. Während unter niedrigen Scherraten eine Anzahl von Protein-Rezeptor-Interaktionen möglich ist, bindet unter hohen Scherraten bevorzugt der Plättchenrezeptor Glykoprotein (GP) Ibα an Von-Willebrand-Faktor (vWF), wodurch die schnell strömenden Thrombozyten abgebremst und transient zum Haften gebracht werden. GP Ib benötigt dafür keine Aktivierung.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alon R, Hammer DA, Springer TA (1995) Lifetime of the P-selectin-carbohydrate bond and its response to tensile force in hydrodynamic flow. Nature 374: 539–542

    Article  CAS  PubMed  Google Scholar 

  • Arya M, Lopez JA, Romo GM (2002) Measurement of the Binding Forces Between von Willebrand Factor and Variants of Platelet Glycoprotein Ibα Using Optical Tweezers. Lasers in Surgery and Medicine 30:306–312

    Article  PubMed  Google Scholar 

  • Back LD, Radbill JR, Crawford DW (1977) Analysis of pulsatile, viscous blood flow through diseased coronary arteries of man. J Biomech 10: 339–353

    Article  CAS  PubMed  Google Scholar 

  • Basmadjian D (1990) The effect of flow and mass transport in thrombogenesis. Ann Biomed Eng 18: 685–709

    Article  CAS  PubMed  Google Scholar 

  • Bastida E, Escolar G, Ordinas A (1987) Fibronektin is required for platelet adhesion and for thrombus formation on subendothelium and collagen surfaces. Blood 70: 1437–1442

    CAS  PubMed  Google Scholar 

  • Baumgartner HR (1973) The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 5: 167–179

    Article  CAS  PubMed  Google Scholar 

  • Brass LF, Zhu L, Stalker TJ (2005) Minding the gaps to promote thrombus growth and stability. J Clin Invest 115: 3385–3392

    Article  CAS  PubMed  Google Scholar 

  • Carr RT, Xiao J (1995) Plasma skimming in vascular trees: numerical estimates of symmetry recovery lengths. Microcirculation 2: 345–353

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Mosher DF (2006a) Enhancement of thrombogenesis by plasma fibronektin cross-linked to fibrin and assembled in platelet thrombi. Blood 107: 3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Cho J, Mosher DF (2006b) Role of fibronektin assembly in platelet thrombus formation. J Thromb Haemost 4: 1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Clemetson KJ, Clemetson JM (2001) Platelet collagen receptors. Thromb Haemost 86: 189–197

    CAS  PubMed  Google Scholar 

  • Cramer EM, Breton-Gorius J, Beesley JE (1988) Ultrastructural demonstration of tubular inclusions coinciding with von Willebrand factor in pig megakaryocytes. Blood 71: 1533–1538

    CAS  PubMed  Google Scholar 

  • Donadelli R, Orje JN, Capoferri C et al. (2006) Size regulation of von Willebrand factor-mediated platelet thrombi by ADAMTS13 in flowing blood. Blood 107: 1943–1950

    Article  CAS  PubMed  Google Scholar 

  • Dopheide SM, Maxwell MJ, Jackson SP (2002) Shear-dependent tether formation during platelet translocation on von Willebrand factor. Blood 99: 159–167

    Article  CAS  PubMed  Google Scholar 

  • Evans EA, Skalak R (1979) Mechanics and thermodynamics of biomembranes: part 1. CRC Crit Rev Bioeng 3: 181–330

    CAS  PubMed  Google Scholar 

  • Fernandez MF, Ginsberg MH, Ruggeri ZM et al. (1982) Multimeric structure of platelet factor VIII/von Willebrand factor: the presence of larger multimers and their reassociation with thrombin-stimulated platelets. Blood 60: 1132–1138

    CAS  PubMed  Google Scholar 

  • Gachet C (2001) ADP receptors of platelets and their inhibition. Thromb Haemost 86: 222–232

    CAS  PubMed  Google Scholar 

  • Gaehtgens P (1981) Distribution of flow and red cell flux in the microcirculation. Scand J Clin Lab Invest Suppl 156: 83–87

    Article  CAS  PubMed  Google Scholar 

  • Goldsmith HL, Turitto VT (1986) Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on Thrombosis and Haemostasis. Thromb Haemost 55: 415–435

    CAS  PubMed  Google Scholar 

  • Goldsmith HL, Cokelet G, Gaehtgens P (1989) Robin Fahraeus: Evolution of his concepts cardiovascular physiology. Am J Physiol 257: H1005–H1015

    CAS  PubMed  Google Scholar 

  • Goto S, Salomon DR, Ikeda Y et al. (1995) Characterization of the unique mechanism mediating the shear-dependent binding of soluble von Willebrand factor to platelets. J Biol Chem 270: 23352–23361

    Article  CAS  PubMed  Google Scholar 

  • Hada M, Kaminski M, Bockenstedt P et al. (1986) Covalent crosslinking of von Willebrand factor to fibrin. Blood 68: 95–101

    CAS  PubMed  Google Scholar 

  • Hantgan RR, Hindriks G, Taylor RG (1990) Glycoprotein Ib, von Willebrand factor, and glycoprotein IIb: IIIa are all involved in platelet adhesion to fibrin in flowing whole blood. Blood 76: 345–353

    CAS  PubMed  Google Scholar 

  • Harrison RL, McKee PA (1984) Estrogen stimulates von Willebrand factor production by cultured endothelial cells. Blood 63: 657–664

    CAS  PubMed  Google Scholar 

  • Hynes RO (1999) The dynamic dialogue between cells and matrices: implications of fibronektin’s elasticity. Proc Natl Acad Sci USA 96: 2588–2590

    Article  CAS  PubMed  Google Scholar 

  • Jackson SP, Nesbitt WS, Kulkarni S (2003) Signaling events underlying thrombus formation. J Thromb Haemost 1: 1602–1612

    Article  CAS  PubMed  Google Scholar 

  • Jurk K, Clemetson KJ, de Groot PG et al. (2003) Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GP Ib): an alternative/backup mechanism to von Willebrand factor. FASEB J 17: 1490–1492

    CAS  PubMed  Google Scholar 

  • Karnis A, Goldsmith HL, Mason SG (1963) Axial migration of particles in Poiseuille flow. Nature 200: 159–160

    Article  Google Scholar 

  • Kasirer-Friede A, Ware J, Leng L et al. (2002) Lateral clustering of platelet GP Ib-IX complexes leads to up-regulation of the adhesive function of integrin alpha IIbbeta 3. J Biol Chem 277: 11949–11956

    Article  CAS  PubMed  Google Scholar 

  • Kasirer-Friede A, Cozzi MR, Mazzucato M et al. (2004) Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 103: 3403–3411

    Article  CAS  PubMed  Google Scholar 

  • Kato K, Kanaji T, Russell S et al. (2003) The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. Blood 102: 1701–1707

    Article  CAS  PubMed  Google Scholar 

  • Koutts J, Walsh PN, Plow EF et al. (1978) Active release of human platelet factor VIII-related antigen by adenosine diphosphate, collagen, and thrombin. J Clin Invest 62: 1255–1263

    Article  CAS  PubMed  Google Scholar 

  • Livio M, Gotti E, Marchesi D et al. (1982) Uraemic bleeding: role of anaemia and beneficial effect of red cell transfusions. Lancet 2: 1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Loscalzo J, Inbal A, Handin RI (1986) von Willebrand protein facilitates platelet incorporation in polymerizing fibrin. J Clin Invest 78: 1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Mailhac A, Badimon JJ, Fallon JT et al. (1994) Effect of an eccentric severe stenosis on fibrin(ogen) deposition on severely damaged vessel wall in arterial thrombosis. Relative contribution of fibrin(ogen) and platelets. Circulation 90: 988–996

    CAS  PubMed  Google Scholar 

  • Matuskova J, Chauhan AK, Cambien B et al. (2006) Decreased plasma fibronektin leads to delayed thrombus growth in injured arterioles. Arterioscler Thromb Vasc Biol 26: 1391–1396

    Article  CAS  PubMed  Google Scholar 

  • Maxwell MJ, Westein E, Nesbitt WS et al. (2007) Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 109: 566–576

    Article  CAS  PubMed  Google Scholar 

  • Mayadas TN, Wagner DD (1991) von Willebrand factor biosynthesis and processing. Ann NY Acad Sci 614: 153–166

    Article  CAS  PubMed  Google Scholar 

  • Mazzucato M, Pradella P, Cozzi MR et al. (2002) Sequential cytoplasmic Kalzium signals in a 2-stage platelet activation process induced by the glycoprotein Ibalpha mechanoreceptor. Blood 100: 2793–2800

    Article  CAS  PubMed  Google Scholar 

  • Nesbitt WS, Kulkarni S, Giuliano S et al. (2002) Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent Kalzium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 277: 2965–2972

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Denis CV, Subbarao S et al. (2000) Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest 106: 385–392

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Yuen PS, Papalia JM et al. (2003) Plasma fibronektin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 100: 2415–2419

    Article  CAS  PubMed  Google Scholar 

  • Nieswandt B, Watson SP (2003) Platelet-collagen interaction: is GPVI the central receptor? Blood 102: 449–461

    Article  CAS  PubMed  Google Scholar 

  • Perkkio J, Wurzinger LJ, Schmid-Schonbein H (1987) Plasma and platelet skimming at T-junctions. Thromb Res 45: 517–526

    Article  CAS  PubMed  Google Scholar 

  • Raucher D, Sheetz MP (1999) Characteristics of a membrane reservoir buffering membrane tension. Biophys J 77: 1992–2002

    Article  CAS  PubMed  Google Scholar 

  • Reininger AJ, Heijnen HF, Schumann H et al. (2006) Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 107: 3537–3545

    Article  CAS  PubMed  Google Scholar 

  • Ribes JA, Francis CW (1990) Multimer size dependence of von Willebrand factor binding to crosslinked or noncrosslinked fibrin. Blood 75: 1460–1465

    CAS  PubMed  Google Scholar 

  • Ruggeri, ZM (2003) Von Willebrand factor: a matrix protein that tries to be soluble. Blood 101: 2450

    Article  CAS  Google Scholar 

  • Ruggeri ZM, Bader R, De Marco L (1982a) Glanzmann thrombasthenia: deficient binding of von Willebrand factor to thrombin-stimulated platelets. Proc Natl Acad Sci USA 79: 6038–6041

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri ZM, Mannucci PM, Lombardi R et al. (1982b) Multimeric composition of factor VIII/von Willebrand factor following administration of DDAVP: implications for pathophysiology and therapy of von Willebrand’s disease subtypes. Blood 59: 1272–1278

    CAS  PubMed  Google Scholar 

  • Ruggeri ZM, De Marco L, Gatti L et al. (1983) Platelets have more than one binding site for von Willebrand factor. J Clin Invest 72: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Ruggeri ZM, Dent JA, Saldívar E (1999) Contribution of distinct adhesive interactions to platelet aggregation in flowing blood. Blood 94: 172–178

    CAS  PubMed  Google Scholar 

  • Ruggeri ZM, Orje JN, Habermann R (2006) Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 108: 1903–1910

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Saldivar E, Ruggeri ZM (1996) Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84: 289–297

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Almus-Jacobs F, Ruggeri ZM (1998) Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 94: 657–666

    Article  CAS  PubMed  Google Scholar 

  • Savage B, Sixma JJ, Ruggeri ZM (2002) Functional self-association of von Willebrand factor during platelet adhesion under flow. Proc Natl Acad Sci USA 99: 425–430

    Article  CAS  PubMed  Google Scholar 

  • Schneider SW, Nuschele S, Wixforth A et al. (2007) Shear-induced unfolding triggers adhesion of von Willebrand factor fibers. Proc Natl Acad Sci USA 104: 7899–7903

    Article  CAS  PubMed  Google Scholar 

  • Schwertz H, Tolley ND, Foulks JM et al. (2006) Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med 203: 2433–2440

    Article  CAS  PubMed  Google Scholar 

  • Shankaran H, Alexandridis P, Neelamegham S (2003) Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 101: 2637–2645

    Article  CAS  PubMed  Google Scholar 

  • Shao JY, Ting-Beall HP, Hochmuth RM (1998) Static and dynamic lengths of neutrophil microvilli. Proc Natl Acad Sci USA 95: 6797–6802

    Article  CAS  PubMed  Google Scholar 

  • Siedlecki CA, Lestini BJ, Kottke-Marchant KK et al (1996) Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood 88: 2939–2950

    CAS  PubMed  Google Scholar 

  • Slichter SJ, Harker LA (1978) Thrombocytopenia: mechanisms and management of defects in platelet production. Clin Haematol 7: 523–539

    CAS  PubMed  Google Scholar 

  • Stel HV, Sakariassen KS, de Groot PG (1985) Von Willebrand factor in the vessel wall mediates platelet adherence. Blood 65: 85–90

    CAS  PubMed  Google Scholar 

  • Strony J, Beaudoin A, Brands D et al. (1993) Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am J Physiol 265: H1787–H1796

    CAS  PubMed  Google Scholar 

  • Turitto VT, Weiss HJ, Zimmerman TS (1985) Factor VIII/von Willebrand factor in subendothelium mediates platelet adhesion. Blood 65: 823–831

    CAS  PubMed  Google Scholar 

  • Wagner DD (1990) Cell biology of von Willebrand factor. Annu Rev Cell Biol 6: 217–246

    Article  CAS  PubMed  Google Scholar 

  • Walter O, Reininger AJ (2003) Mechanisms of von Willebrand Factor. CSL Behring, speakers booklet and slide kit

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reininger, A.J. (2010). Thrombusformation im Blutfluss. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics