Skip to main content

Abstract

High-resolution optical imaging of objects hidden in scattering media such as the human eye is a challenging and important problem with many industrial and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farsiu S, Christofferson J, Eriksson B, Milanfar P, Friedlander B, Shakouri A, Nowak R. Statistical detection and imaging of objects hidden in turbid media using ballistic photons. Applied Opt 2007;46:5805–5822.

    Article  Google Scholar 

  2. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science 1991:254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  3. Dunsby C, French PMW. Techniques for depth-resolved imaging through turbid media including coherence-gated imaging. J Phys D: Appl Phys 2003;36:207–227.

    Article  Google Scholar 

  4. Fercher AF, Drexler W, Hitzenberger CK, Lasser T. Optical coherence tomography-principles and applications. Rep Prog Phys 2003;66:239–303.

    Article  Google Scholar 

  5. Srinivasan VJ, Wojtkowski M, Witkin AJ, Duker JS, Ko TH, Carvalho M, Schuman JS, Kowalczyk A, Fujimoto JG. High-definition and 3-dimensional imaging of macular pathologies with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2006;113:2054–2065.

    Article  PubMed  Google Scholar 

  6. Wojtkowski M, Srinivasan V, Fujimoto JG, Ko T, Schuman JS, Kowalczyk A, Duker JS. Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 2005:112:1734–1746.

    Article  PubMed  Google Scholar 

  7. Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS. Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006:90:191–197.

    Article  PubMed  CAS  Google Scholar 

  8. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.

    PubMed  CAS  Google Scholar 

  9. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.

    PubMed  CAS  Google Scholar 

  10. Toth CA, Birngruber R, Boppart SA, Hee MR, Fujimoto JG, DiCarlo CD, Swanson EA, Cain CP, Narayan DG, Noojin GD, Roach WP. Argon laser retinal lesions evaluated in vivo by optical coherence tomography. Am J Ophthalmol 1997;123:188–198.

    PubMed  CAS  Google Scholar 

  11. Toth CA, Narayan DG, Boppart SA, Hee MR, Fujimoto JG, Birngruber R, Cain CP, DiCarlo CD, Roach WP. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol 1997;115:1425–1428.

    PubMed  CAS  Google Scholar 

  12. Gallemore RP, Jumper JM, McCuen II BW, Jaffe GJ, Postel EA, Toth CA. Diagnosis of vitreoretinal adhesions in macular disease with optical coherence tomography. Retina 2000;20:115–120.

    Article  PubMed  CAS  Google Scholar 

  13. Ting TD, Oh M, Cox TA, Meyer CH, Toth CA. Decreased visual acuity associated with cystoid macular edema in neovascular age-related macular degeneration. Arch Ophthalmol 2002;120:731–737.

    PubMed  Google Scholar 

  14. Radhakrishnan S, Rollins AM, Roth JE, Yazdanfar S, Westphal V, Bardenstein DS, Izatt JA. Real-time optical coherence tomography of the anterior segment at 1310 nm. Arch Ophthalmol 2001;119:1179–1185.

    PubMed  CAS  Google Scholar 

  15. Nolan WP, See JL, Chew PT, Friedman DS, Smith SD, Radhakrishnan S, Zheng C, Foster PJ, Aung T. Detection of primary angle closure using anterior segment optical coherence tomography in Asian eyes. Ophthalmology 2007;114:33–39.

    Article  PubMed  Google Scholar 

  16. Hess DB, Asrani SG, Bhide MG, Enyedi LB, Stinnett SS, Freedman SF. Macular and retinal nerve fiber layer analysis of normal and glaucomatous eyes in children using optical coherence tomography. Am J Ophthalmol 2005;139:509–17.

    Article  PubMed  Google Scholar 

  17. de Boer JF, Cense B, Park BH, Pierce MC, Tearney GJ, Bouma BE. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28:2067–2069.

    Article  PubMed  Google Scholar 

  18. Chen TC, Cense B, Pierce MC, Nassif N, Park BH, Yun SH, White BR, Bouma BE, Tearney GJ, de Boer JF. Spectral domain optical coherence tomography: ultra-high speed, ultra-high resolution ophthalmic imaging. Arch Ophthalmol 2005:123:1715–1720.

    Article  PubMed  Google Scholar 

  19. Costa RA, Skaf M, Melo LA, Calucci D, Cardillo JA, Castro JC, Huang D, Wojtkowski M. Retinal assessment using optical coherence tomography. Prog Retin Eye Res 2006;25:325–353.

    Article  PubMed  Google Scholar 

  20. Leitgeb R, Hitzenberger CK, Fercher AF. Performance of Fourier domain vs. time domain optical coherence tomography. Opt Express 2005;11:889–894.

    Article  Google Scholar 

  21. Choma MA, Sarunic MV, Yang C, Izatt, JA. Sensitivity advantage of swept-source and fourier-domain optical coherence tomography. Opt Express 2003;11:2183–2189.

    PubMed  Google Scholar 

  22. Stopa M, Bower BA, Davies E, Izatt JA, Toth CA. Correlation of pathologic features in spectral domain OCT imaging with conventional retinal studies. Retina 2008;28:298–308.

    Article  PubMed  Google Scholar 

  23. Jiao S, Knighton R, Huang X, Gregori G, Puliafito C. Simultaneous acquisition of sectional and fundus opthalmic images with spectral-domain optical coherence tomography. Opt Express 2005;13:444–452.

    Article  PubMed  Google Scholar 

  24. Zhang N, Hoffmeyer GC, Young ES, Burns RE, Winter KP, Stinnett SS, Toth CA, Jaffe GJ. Optical coherence tomography reader agreement in neovascular age-related macular degeneration. Am J Ophthalmol 2007;144:37–44.

    Article  PubMed  Google Scholar 

  25. Farsiu S, Elad M, Milanfar P. Constrained, globally optimal, multi-frame motion estimation. Proc IEEE Workshop on Statistical Signal Processing 2005;July:1396–1401.

    Article  Google Scholar 

  26. Haeker M, Sonka M, Kardon R, Shah VA, Wu X, Abràmoff MD. Automated segmentation of intraretinal layers from macular optical coherence tomography images. Proc SPIE 2007;6512:651214-1 to 651214-11.

    Google Scholar 

  27. Age-related eye disease study research group . The age-related eye disease study system for classifying age-related macular degeneration from stereoscopic color fundus photographs: the age-related eye disease study report number 6. Am J Ophthalmol 2001;132:668–681.

    Google Scholar 

  28. Anderson DH, Talaga KC, Rivest AJ, Barron E, Hageman GS, Johnson LV. Characterization of β amyloid assemblies in drusen: the deposits associated with aging and age-related macular degeneration. Exp Eye Res 2004;78:243–256.

    Article  PubMed  CAS  Google Scholar 

  29. Anderson DH, Mullins RF, Hageman GS, Johnson LV. A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol 2002;134:411–431.

    Article  PubMed  CAS  Google Scholar 

  30. Hageman GS, Luthert PJ, Victor Chong NH, Johnson LV, Anderson DH, Mullin RF. An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 2001;20: 705–732.

    Article  PubMed  CAS  Google Scholar 

  31. Khanifar AA, Koreishi AF, Izatt JA, Toth CA. Drusen ultrastructure imaging with spectral domain optical coherence tomography in age-related macular degeneration. Retina Society, October 2007, Boston, MA, USA.

    Google Scholar 

  32. Schmidt-Erfurth U, Leitgeb RA, Michels S, Povazay B, Sacu S, Hermann B, Ahlers C, Sattmann H, Scholda C, Fercher AF, Drexler W. Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest Ophthalmol Vis Sci. 2005:46:3393–402.

    Article  PubMed  Google Scholar 

  33. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, Schmitz-Valckenberg S. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. Am J Ophthalmol 2007;143:463–472.

    Article  PubMed  Google Scholar 

  34. Bindewald A, Schmitz-Valckenberg S, Jorzik JJ, Dolar-Szczasny J, Sieber H, Keilhauer C, Weinberger AWA, Dithmar S, Pauleikhoff D, Mansmann U, Wolf S, Holz FG. Classification of abnormal fundus autofluorescence patterns in the junctional zone of geographic atrophy in patients with age related macular degeneration. Br J Ophthalmol 2005:89: 874–878.

    Article  PubMed  CAS  Google Scholar 

  35. Rasband WS, Jmage J, U. S. National Institutes of Health, Bethesda, Maryland, USA 1997–2007, http://rsb.info.nih.gov/ij/.

    Google Scholar 

  36. Ozcan A, Bilenca A, Desjardins AE, Bouma BE, Tearney GJ. Speckle reduction in optical coherence tomography images using digital filtering. J Opt Soc Am 2007;24:1901–1910.

    Article  Google Scholar 

  37. Fernandez DC, Salinas HM, Puliafito CA. Automated detection of retinal layer structures on optical coherence tomography images. Opt Express 2005;13:10200–10216.

    Article  Google Scholar 

  38. Thévenaz P, Ruttimann UE, Unser M. A pyramid approach to sub pixel registration based on intensity. IEEE Trans Image Process 1998;7:27–41.

    Article  PubMed  Google Scholar 

  39. Takeda H, Farsiu S, Milanfar P. Kernel regression for image processing and reconstruction. IEEE Trans Image Process 2007;16:349–366.

    Article  PubMed  Google Scholar 

  40. Fernández DC. Delineating fluid-filled region boundaries in optical coherence tomography images of the retina. IEEE Transactions on medical imaging 2005;24:929–945.

    Article  PubMed  Google Scholar 

  41. Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans Pattem Anal Mach Inteil 1990;12:629–639.

    Article  Google Scholar 

  42. Xu C, Prince JL. Generalized gradient vector flow external forces for active contours. Signal Process, 1998;71:131–139.

    Article  Google Scholar 

  43. Farsiu S, Chiu JC, Izatt JA, Toth CA. Fast detection and segmentation of drusen in retinal optical coherence tomography images. Proc SPIE Photonics West, San Jose, CA, 2008.

    Google Scholar 

  44. van Velthoven ME, Faber DJ, Verbraak FD, van Leeuwen TG, de Smet MD. Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 2007;26:57–77.

    Article  PubMed  Google Scholar 

  45. Zawadzki R, Jones S, Olivier S, Zhao M, Bower B, Izatt J, Choi S, Laut S, Werner J. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express 2005;13:8532–8546.

    Article  PubMed  Google Scholar 

  46. Hammer DX, Iftimia NV, Bigelow CE, Ustun TE, Bloom B, Ferguson RD, Burns SA. High resolution retinal imaging with a compact adaptive optics spectral domain optical coherence tomography system. Proc SPIE 2007;Volume 6426.

    Google Scholar 

  47. Yazdanfar S, Rollins AM, Izatt JA. In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch Ophthalmol 2003;121:235–239.

    PubMed  Google Scholar 

  48. Cense B, Chen TC, Nassif N, Pierce MC, Yun SH, Park BH, Bouma BE, Tearney GJ, de Boer JF. Ultra-high speed and ultra-high resolution spectral-domain optical coherence tomography and optical Doppler tomography in ophthalmology. Bull Soc Belge Ophthalmol 2006;302:123–132.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Medizin Verlag Heidelberg

About this paper

Cite this paper

Toth, C.A., Farsiu, S., Khanifar, A., Chong, G. (2009). Applications of Spectral-Domain OCT in AMD. In: Optical Coherence Tomography in Age-Related Macular Degeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01467-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01467-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01468-0

  • Online ISBN: 978-3-642-01467-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics