Skip to main content

The Stochastic Schrödinger Equation

  • Chapter
  • First Online:
Quantum Trajectories and Measurements in Continuous Time

Part of the book series: Lecture Notes in Physics ((LNP,volume 782))

In this chapter, we introduce the theory of measurements in continuous time (diffusive case) starting from the particular but important case of complete observation. This allows to present the Hilbert space formulation of the theory, where the state of the observed quantum system is described by a vector in the Hilbert space H of the system. Even if this is a special case of the more general theory presented in Chap. 3, 4 and 5, it deserves a separate treatment for different reasons: it is instructive, it uses only the Hilbert space formulation of quantum mechanics, it is of interest on its own because the stochastic Scrödinger equation presented in this chapter has also been used in different contexts [1–6], some mathematical results of the following chapter will relay anyhow on the theory presented here, and Hilbert space SDEs are the key starting point for efficient numerical simulations of the dynamics of open quantum systems [1, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. C. Percival, Quantum state diffusion (Cambridge University Press, Cambridge, 1998).

    MATH  Google Scholar 

  2. H. Hasegawa, H. Ezawa, Stochastic calculus and some models of irreversible processes, Prog. Theor. Phys. Suppl. 69 (1980) 41–54.

    Article  MathSciNet  ADS  Google Scholar 

  3. N. Gisin, Quantum measurements and stochastic processes, Phys. Rev. Lett. 52 (1984) 1657–1660.

    Article  MathSciNet  ADS  Google Scholar 

  4. G. C. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42 (1990) 78–89.

    MathSciNet  ADS  Google Scholar 

  5. N. Gisin, P. L. Knight, I. C. Percival, R. C. Thompson, D. C. Wilson, Quantum state diffusion theory and a quantum jump experiment, Modern Opt., 40 (1993) 1663–1671.

    Article  ADS  Google Scholar 

  6. D. C. Brody, I. C. Constantinou, J. D. C. Dear, L. P. Hughston, Exactly solvable quantum state reduction models with time-dependent coupling, J. Phys. A39 (2006) 11029–11051, arXiv:quant-ph/0511046.

    MathSciNet  ADS  Google Scholar 

  7. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    MATH  Google Scholar 

  8. H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Physics m 18 (Springer, Berlin, 1993).

    Google Scholar 

  9. P. Zoller, C. W. Gardiner, Quantum noise in quantum optics: The stochastic Schrödinger equation. In S. Reynaud, E. Giacobino and J. Zinn-Justin (eds.), Fluctuations quantiques, (Les Houches 1995) (North-Holland, Amsterdam, 1997) pp. 79–136.

    Google Scholar 

  10. V. P. Belavkin, Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes. In A. Blaquière (ed.), Modelling and Control of Systems, Lecture Notes in Control and Information Sciences 121 (Springer, Berlin, 1988) pp. 245–265.

    Google Scholar 

  11. L. Diósi, Continuous quantum measurement and Itô formalism, Phys. Lett. A 129 (1988) 419–423.

    Article  MathSciNet  ADS  Google Scholar 

  12. L. Diósi, Localized solution of a simple nonlinear quantum Langevin equation, Phys. Lett. A 132 (1988) 233–236.

    Article  MathSciNet  ADS  Google Scholar 

  13. V. P. Belavkin, A new wave equation for a continuous nondemolition measurement, Phys. Lett. A 140 (1989) 355–358.

    MathSciNet  ADS  Google Scholar 

  14. V. P. Belavkin, P. Staszewski, A quantum particle undergoing continuous observation, Phys. Lett. A 140 (1989) 359–362.

    MathSciNet  ADS  Google Scholar 

  15. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rew. A 40 (1989) 1165–1174.

    Article  ADS  Google Scholar 

  16. V. P. Belavkin, A posterior Schrödinger equation for continuous non demolition measurement, J. Math. Phys. 31 (1990) 2930–2934.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  17. V. P. Belavkin, Stochastic posterior equations for quantum nonlinear filtering. In B. Grigelionis et al. (eds.), Probability Theory and Mathematical Statistics, Vol. I (Vilnius, Mokslas, and VSP, Utrecht, 1990) pp. 91–109.

    Google Scholar 

  18. D. Gatarek, N. Gisin, Continuous quantum jumps and infinite-dimensional stochastic equations, J. Math. Phys. 32 (1991) 2152–2157.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. V. P. Belavkin, P. Staszewski, Nondemolition observation of a free quantum particle, Phys. Rev. A 45 (1992) 1347–1356.

    Article  ADS  Google Scholar 

  20. D. Chruscinski, P. Staszewski, On the asymptotic solutions of Belavkin’s stochastic wave equation, Physica Acta 45 (1992) 193–199.

    MATH  MathSciNet  ADS  Google Scholar 

  21. A. S. Holevo, Stochastic representations of quantum dynamical semigroups, Proc. Steklov Inst. Math. 191 in Russian; English translation: Issue 2 (1992) 145–154.

    MathSciNet  Google Scholar 

  22. A. Barchielli, A. S. Holevo, Constructing quantum measurement processes via classical stochastic calculus, Stoch. Proc. Appl. 58 (1995) 293–317.

    Article  MATH  MathSciNet  Google Scholar 

  23. A. Barchielli, Some stochastic differential equations in quantum optics and measurement theory: The case of diffusive processes. In C. Cecchini (ed.), Contributions in Probability – In memory of Alberto Frigerio (Forum, Udine, 1996) pp. 43–55.

    Google Scholar 

  24. A. S. Holevo, On dissipative stochastic equations in a Hilbert space, Probab. Theory Relat. Fields 104 (1996) 483–500.

    Article  MATH  MathSciNet  Google Scholar 

  25. A. Barchielli, A. M. Paganoni, F. Zucca, On stochastic differential equations and semigroups of probability operators in quantum probability, Stochastic Process. Appl. 73 (1998) 69–86.

    MATH  MathSciNet  Google Scholar 

  26. A. Barchielli, F. Zucca, On a class of stochastic differential equations used in quantum optics, Rendiconti del Seminario Matematico e Fisico di Milano, Vol. LXVI (1996) (Due Erre Grafica, Milano, 1998) pp. 355–376; arXiv:funct-an/9711002

    Google Scholar 

  27. C. M. Mora, R. Rebolledo, Basic properties of nonlinear stochastic Schrödinger equations driven by Brownian motions, Ann. Appl. Prob. 18 (2008) 591–619, arXiv:0804.0121.

    Article  MATH  MathSciNet  Google Scholar 

  28. X. Mao, Stochastic Differential Equations and Applications (Horwood, Chichester, 1997).

    MATH  Google Scholar 

  29. C. Pellegrini, Existence, uniqueness and approximation of stochastic Schrodinger equation: The diffusive case (2007) arXiv:0709.1703v1 [math.PR].

    Google Scholar 

  30. C. Pellegrini, Markov chains approximations of jump-diffusion quantum trajectories (2008) arXiv:0803.2593v1 [math.PR].

    Google Scholar 

  31. G. C. Ghirardi, P. Pearle, A. Rimini, Stochastic processes in Hilbert space: A consistent formulation of quantum mechanics in Proceedings 3rd International Symposium on Foundations of Quantum Mechanics (Tokyo, 1989) pp. 181–189.

    Google Scholar 

  32. C. M. Mora, Numerical solution of conservative finite dimensional stochastic Schrödinger equations, Ann. Appl. Probab. 15 (2005) 2144–2171; DOI 10.1214/105051605000000403; arXiv:math.PR/0508490.

    Article  MATH  MathSciNet  Google Scholar 

  33. N. Gisin, I. C. Percival, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25 (1992) 5677–5691.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  34. K. Mølmer, Y. Castin, J. Dalibard, A Monte-Carlo wave function method in quantum optics, J. Opt. Soc. Am. B 10 (1993) 524–538.

    Article  ADS  Google Scholar 

  35. C. M. Mora, Numerical simulation of stochastic evolution equations associated to quantum Markov semigroups, Math. Comput. 73 (2003) 1393–1415.

    Article  MathSciNet  ADS  Google Scholar 

  36. N. Gisin, M. B. Cibils,Quantum diffusions, quantum dissipation and spin relaxation, J. Phys. A: Math. Gen. 25 (1992) 5165–5176.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. N. Gisin, I. C. Percival, Wave-function approach to dissipative processes: Are there quantum jumps? Phys. Lett. A 167 (1992) 315–318.

    Article  MathSciNet  ADS  Google Scholar 

  38. Y. Salama, N. Gisin, Explicit examples of dissipative systems in the quantum state diffusion model, Phys. Lett. A 181 (1993) 269–275.

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Barchielli .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barchielli, A., Gregoratti, M. (2009). The Stochastic Schrödinger Equation. In: Quantum Trajectories and Measurements in Continuous Time. Lecture Notes in Physics, vol 782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01298-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01298-3_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01297-6

  • Online ISBN: 978-3-642-01298-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics