Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 782))

  • 1835 Accesses

Quantum mechanics started as a theory of closed systems: the state of the system is a vector of norm one in a Hilbert space and it evolves in time according to the Schrödinger equation (B.11). In order to describe also a possible uncertainty on the initial state, a “statistical” formulation of quantum mechanics has been developed: the states are represented by statistical operators (Sect. B.3.1), also called density matrices, and their evolution is given by the von Neumann equation (B.18). This statistical formulation revealed to be well suited also for open systems. General evolution equations for density operators appeared under the names of master equations and quantum dynamical semigroups [1–5] (Sect. B.3.3); these concepts were generalised and gave rise to the theory of quantum Markov semigroups [6,7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976).

    MATH  Google Scholar 

  2. R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics 286 (Springer, Berlin, 1987).

    Google Scholar 

  3. C. W. Gardiner, Quantum Noise (Springer, Berlin, 1991).

    MATH  Google Scholar 

  4. H. J. Carmichael, An Open System Approach to Quantum Optics, Lecture Notes in Physics m 18 (Springer, Berlin, 1993).

    Google Scholar 

  5. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002).

    MATH  Google Scholar 

  6. F. Fagnola, R. Rebolledo, Notes on the qualitative behaviour of quantum Markov semigroups. In S. Attal, A. Joye and C.-A. Pillet (eds.), Open Quantum Systems III, Lecture Notes in Mathematics 1882 (Springer, Berlin, 2006) pp. 161–206.

    Google Scholar 

  7. R. Rebolledo, Complete positivity and the Markov structure of open quantum systems. In S. Attal, A. Joye and C.-A. Pillet (eds.), Open Quantum Systems II, Lecture Notes in Mathematics 1881 (Springer, Berlin, 2006) pp. 149–182.

    Google Scholar 

  8. K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus (Birkhäuser, Basel, 1992).

    MATH  Google Scholar 

  9. P. A. Meyer, Quantum probability for probabilists. Lecture Notes in Mathematics 1538 (Springer-Verlag, Berlin, 1993).

    Google Scholar 

  10. R. L. Hudson, K. R. Parthasarathy, Quantum Itô’s formula and stochastic evolutions, Commun. Math. Phys. 93 (1984) 301–323.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. C. W. Gardiner, M. J. Collet, Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A 31 (1985) 3761–3774.

    Article  MathSciNet  ADS  Google Scholar 

  12. I. C. Percival, Quantum state diffusion (Cambridge University Press, Cambridge, 1998).

    MATH  Google Scholar 

  13. H. Hasegawa, H. Ezawa, Stochastic calculus and some models of irreversible processes, Prog. Theor. Phys. Suppl. 69 (1980) 41–54.

    Article  MathSciNet  ADS  Google Scholar 

  14. N. Gisin, Quantum measurements and stochastic processes, Phys. Rev. Lett. 52 (1984) 1657–1660.

    Article  MathSciNet  ADS  Google Scholar 

  15. R. Alicki, M. Fannes, On dilating quantum dynamical semigroups with classical Brownian motion, Lett. Math. Phys. 11 (1986) 259–262.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. P. Zoller, C. W. Gardiner, Quantum noise in quantum optics: The stochastic Schrödinger equation. In S. Reynaud, E. Giacobino and J. Zinn-Justin (eds.), Fluctuations quantiques, (Les Houches 1995) (North-Holland, Amsterdam, 1997) pp. 79–136.

    Google Scholar 

  17. C. W. Gardiner, P. Zoller, Quantum Noise (Springer, Berlin, 2000).

    MATH  Google Scholar 

  18. A. Frigerio, Some applications of quantum probability to stochastic differential equations in Hilbert space. In G. Da Prato, L. Tubaro (eds.), Stochastic Partial Differential Equations and Applications II, Lecture Notes in Mathematics 1390 (Springer, Berlin, 1989) pp. 77–90.

    Google Scholar 

  19. A. Barchielli, A. M. Paganoni, Detection theory in quantum optics: Stochastic representation, Quantum Semiclass. Opt. 8 (1996) 133–156.

    Google Scholar 

  20. E. B. Davies, Quantum stochastic processes, Commun. Math. Phys. 15 (1969) 277–304.

    Article  MATH  ADS  Google Scholar 

  21. P. L. Kelley, W. H. Kleiner, Theory of electromagnetic field measurement and photoelectron counting, Phys. Rev. A 136 (1964) 316–334.

    Article  MathSciNet  ADS  Google Scholar 

  22. A. S. Holevo, Statistical Structure of Quantum Theory, Lecture Notes in Physics m 67 (Springer, Berlin, 2001).

    Google Scholar 

  23. A. Barchielli, Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics, Quantum Opt. 2 (1990) 423–441.

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Barchielli, On the quantum theory of measurements continuous in time, Rep. Math. Phys. 33 (1993) 21–34.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  25. A. Barchielli, L. Lanz, G. M. Prosperi, A model for the macroscopic description and continual observations in quantum mechanics, Nuovo Cimento 72B (1982) 79–121.

    MathSciNet  ADS  Google Scholar 

  26. A. Barchielli, L. Lanz, G. M. Prosperi, Statistics of continuous trajectories in quantum mechanics: Operation valued stochastic processes, Found. Phys. 13 (1983) 779–812.

    Article  MathSciNet  ADS  Google Scholar 

  27. V. P. Belavkin, Theory of the control of observable quantum systems, Automat. Remote control 44 (1983) 148–188.

    Google Scholar 

  28. G. M. Prosperi, The quantum measurement process and the observation of continuous trajectories. In Quantum Probability and Applications to the Quantum Theory of Irreversible Processes (Villa Mondragone, 1982), Lecture Notes in Mathematics 1055 (Springer, Berlin, 1984), pp. 301–326.

    Google Scholar 

  29. G. M. Prosperi, Quantum theory of continuous observations: Some significant examples. In Information Complexity and Control in Quantum Physics (Udine, 1985), CISM Courses and Lectures, 294 (Springer, Vienna, 1987) pp. 209–221.

    Google Scholar 

  30. K. Kraus, States, Effects, and Operations, Lecture Notes in Physics 190 (Springer, Berlin, 1983).

    Google Scholar 

  31. E. B. Davies, J. T. Lewis, An operational approach to quantum probability, Commun. Math. Phys. 17 (1970) 239–260.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  32. M. Ozawa, Quantum measuring processes of continuous observables, J. Math. Phys. 25 (1984) 79–87.

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Barchielli, Convolution semigroups in quantum probability, Semesterbericht Funktionalanalysis Tübingen, Band 12, Sommersemester (1987) pp. 29–42.

    Google Scholar 

  34. A. S. Holevo, A noncommutative generalization of conditionally positive definite functions. In L. Accardi, W. von Waldenfels (eds.), Quantum Probability and Applications III, Lecture Notes in Mathematics 1303 (Springer, Berlin, 1988) pp. 128–148.

    Google Scholar 

  35. A. Barchielli, Probability operators and convolution semigroups of instruments in quantum probability, Probab. Theory Rel. Fields 82 (1989) 1–8.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. A. S. Holevo, Limit theorems for repeated measurements and continuous measurement processes. In L. Accardi, W. von Waldenfels (eds.), Quantum Probability and Applications IV, Lecture Notes in Mathematics 1396 (Springer, Berlin, 1989) pp. 229–257.

    Google Scholar 

  37. A. Barchielli, A. M. Paganoni, A note on a formula of Lévy-Khinchin type in quantum probability, Nagoya Math. J. 141 (1996) 29–43.

    Google Scholar 

  38. M. B. Mensky, Continuous quantum measurements and path integrals (Institute of Physics, Bristol, 1993).

    Google Scholar 

  39. G. Lupieri, Generalized stochastic processes and continual observations in quantum mechanics, J. Math. Phys. 24 (1983) 2329–2339.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  40. A. Barchielli, G. Lupieri, Quantum stochastic calculus, operation valued stochastic processes and continual measurements in quantum mechanics, J. Math. Phys. 26 (1985) 2222–2230.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  41. A. Barchielli, Measurement theory and stochastic differential equations in quantum mechanics, Phys. Rev. A 34 (1986) 1642–1649.

    Article  MathSciNet  ADS  Google Scholar 

  42. A. Barchielli, Quantum stochastic differential equations: An application to the electron shelving effect, J. Phys. A: Math. Gen. 20 (1987) 6341–6355.

    Article  MathSciNet  ADS  Google Scholar 

  43. V. P. Belavkin, Quantum continual measurements and a posteriori collapse on CCR, Commun. Math. Phys. 146 (1992) 611–635.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  44. Quantum probability communications, Vol. XI (Grenoble, 1998), ,(World Scientific Publication, River Edge, NJ, 2003) 123–170, QP-PQ, XI.

    Google Scholar 

  45. A. Barchielli, Input and output channels in quantum systems and quantum stochastic differential equations. In L. Accardi, W. von Waldenfels (eds.), Quantum Probability and Applications III, Lecture Notes in Mathematics 1303 (Springer, Berlin, 1988) pp. 37–51.

    Google Scholar 

  46. A. Barchielli, Continual measurements in quantum mechanics and quantum stochastic calculus. In S. Attal, A. Joye, C.-A. Pillet (eds.), Open Quantum Systems III, Lecture Notes in Mathematics 1882 (Springer, Berlin, 2006), pp. 207–291.

    Google Scholar 

  47. L. Accardi, Lu Youn Gang, I. Volovich, Quantum theory and its stochastic limit (Springer-Verlag, Berlin, 2002). ISBN: 3–540–41928–4.

    Google Scholar 

  48. V. P. Belavkin, A new wave equation for a continuous nondemolition measurement, Phys. Lett. A 140 (1989) 355–358.

    MathSciNet  ADS  Google Scholar 

  49. V. P. Belavkin, A continuous counting observation and posterior quantum dynamics, J. Phys. A: Math. Gen. 22 (1989) L1109–L1114.

    Article  MathSciNet  ADS  Google Scholar 

  50. A. Barchielli, V. P. Belavkin, Measurements continuous in time and a posteriori states in quantum mechanics, J. Phys. A: Math. Gen. 24 (1991) 1495–1514; arXiv:quant-ph/0512189.

    Article  MathSciNet  ADS  Google Scholar 

  51. M. Ozawa, Conditional probability and a posteriori states in quantum mechanics, Publ. R.I.M.S. Kyoto Univ. 21 (1985) 279–295.

    Article  MATH  Google Scholar 

  52. V. P. Belavkin, Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes. In A. Blaquière (ed.), Modelling and Control of Systems, Lecture Notes in Control and Information Sciences 121 (Springer, Berlin, 1988) pp. 245–265.

    Google Scholar 

  53. V. P. Belavkin, Stochastic posterior equations for quantum nonlinear filtering. In B. Grigelionis et al. (eds.), Probability Theory and Mathematical Statistics, Vol. I (Vilnius, Mokslas, and VSP, Utrecht, 1990) pp. 91–109.

    Google Scholar 

  54. V. P. Belavkin, Continuous non-demolition observation, quantum filtering and optimal estimation. In C. Bendjaballah et al. (eds.), Quantum Aspects of Optical Communications, Lecture Notes in Physics 378 (Springer, Berlin, 1991) pp. 151–163.

    Google Scholar 

  55. V. P. Belavkin, Quantum diffusion, measurement and filtering, Probab. Theor. Appl. 38 (1993) 171–201.

    MathSciNet  Google Scholar 

  56. N. Gisin, I. C. Percival, The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen. 25 (1992) 5677–5691.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. K. Mølmer, Y. Castin, J. Dalibard, A Monte-Carlo wave function method in quantum optics, J. Opt. Soc. Am. B 10 (1993) 524–538.

    Article  ADS  Google Scholar 

  58. Y. Salama, N. Gisin, Explicit examples of dissipative systems in the quantum state diffusion model, Phys. Lett. A 181 (1993) 269–275.

    Article  MathSciNet  ADS  Google Scholar 

  59. A. Barchielli, F. Zucca, On a class of stochastic differential equations used in quantum optics, Rendiconti del Seminario Matematico e Fisico di Milano, Vol. LXVI (1996) (Due Erre Grafica, Milano, 1998) pp. 355–376; arXiv:funct-an/9711002

    Google Scholar 

  60. C. M. Mora, Numerical simulation of stochastic evolution equations associated to quantum Markov semigroups, Math. Comput. 73 (2003) 1393–1415.

    Article  MathSciNet  ADS  Google Scholar 

  61. C. M. Mora, Numerical solution of conservative finite dimensional stochastic Schrödinger equations, Ann. Appl. Probab. 15 (2005) 2144–2171; DOI 10.1214/105051605000000403; arXiv:math.PR/0508490.

    Article  MATH  MathSciNet  Google Scholar 

  62. L. Diósi, Models for universal reduction of macroscopic quantum fluctuations, Phys. Rew. A 40 (1989) 1165–1174.

    Article  ADS  Google Scholar 

  63. G. C. Ghirardi, P. Pearle, A. Rimini, Stochastic processes in Hilbert space: A consistent formulation of quantum mechanics in Proceedings 3rd International Symposium on Foundations of Quantum Mechanics (Tokyo, 1989) pp. 181–189.

    Google Scholar 

  64. G. C. Ghirardi, P. Pearle, A. Rimini, Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles, Phys. Rev. A 42 (1990) 78–89.

    MathSciNet  ADS  Google Scholar 

  65. G. C. Ghirardi, A. Rimini, Old and news ideas in the theory of quantum measurement. In A. I. Miller (ed.), Sixty-two Years of Uncertainty (Plenum Press, New York, 1990) pp. 167–191.

    Google Scholar 

  66. D. C. Brody, I. C. Constantinou, J. D. C. Dear, L. P. Hughston, Exactly solvable quantum state reduction models with time-dependent coupling, J. Phys. A39 (2006) 11029–11051, arXiv:quant-ph/0511046.

    MathSciNet  ADS  Google Scholar 

  67. V. P. Belavkin, A stochastic posterior Schrödinger equation for counting nondemolition measurement, Lett. Math. Physics 20 (1990) 85–89.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  68. V. P. Belavkin, P. Staszewski, A continuous observation of photon emission, Rep. Math. Phys. 29 (1991) 213–225.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  69. P. Staszewski, G. Staszewska, The atom under continuous–counting observation: Relaxation without mixing, Europhys. Lett. 20 (1992) 191–196.

    Article  MathSciNet  ADS  Google Scholar 

  70. A. Barchielli, Some stochastic differential equations in quantum optics and measurement theory: The case of counting processes. In L. Diòsi, B. Lukács (eds.), Stochastic Evolution of Quantum States in Open Systems and in Measurement Processes (World Scientific, Singapore, 1994) pp. 1–14.

    Google Scholar 

  71. H. M. Wiseman, G. J. Milburn, Quantum theory of optical feedback via homodyne detection, Phys. Rev. Lett. 70 (1993) 548–551.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Barchielli .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barchielli, A., Gregoratti, M. (2009). Introduction. In: Quantum Trajectories and Measurements in Continuous Time. Lecture Notes in Physics, vol 782. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01298-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01298-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01297-6

  • Online ISBN: 978-3-642-01298-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics