Skip to main content

Development of the Respiratory System (Including the Preterm Infant)

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation
  • 5126 Accesses

Abstract

The developing mammalian lung is challenged by the requisite need for a gas-exchange surface area extensive enough to meet the needs of an organism’s oxygen consumption and CO2 removal. This is achieved first by the transformation of the primitive endoderm into the 105 conducting and 107 respiratory airways by iterative branching morphogenesis, followed by the extensive subdivision and successive maturation of the terminal airways into alveoli: the hundreds of millions of thin spherical cavities which facilitate gas exchange between the airways and the vascular system. Since the process of alveolar formation (alveolarization) occurs largely after birth, premature infants are at increased susceptibility to respiratory distress, often necessitating prolonged assisted ventilation. Despite major advances in the management of perinatal infant care, including improved mechanical ventilation modalities, prenatal steroid administration, and surfactant therapy, many such infants do not undergo normal alveolar development, resulting in the chronic lung disease, bronchopulmonary dysplasia (BPD). An appreciation of the complex cell and molecular interactions which govern normal lung morphogenesis is essential for understanding the aetiology of—and advancing treatments for—pulmonary diseases such as BPD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ARDS:

Acute respiratory distress syndrome

BASCs:

Bronchoalveolar stem cells

BPD:

Bronchopulmonary dysplasia

CDH:

Congenital diaphragmatic hernia

DLCO :

Pulmonary diffusing capacity for carbon monoxide

E:

Embryonic day

ECM:

Extracellular matrix

FGF:

Fibroblast growth factor

Flk-1:

Fetal liver kinase-1

Flt-1:

Fms-like tyrosine kinase

Fox:

Forkhead box

GC:

Glucocorticoid

Hif:

Hypoxia-inducible factor

Hox:

Homeobox

IPF:

Idiopathic pulmonary fibrosis

MMP:

Matrix metalloproteinase

NF-κB:

Nuclear factor kB

PDA:

Patent ductus arteriosus

PDGF:

Platelet-derived growth factor

pnd:

Postnatal day

RA:

Retinoic acid

RDS:

Respiratory distress syndrome

SHH:

Sonic hedgehog

SP-C:

Surfactant protein C

TGF-β:

Transforming growth factor beta

TIMP:

Tissue inhibitor of metalloproteinases

TTF-1:

Thyroid transcription factor 1

V A :

Alveolar volume

VEGF-A:

Vascular endothelial growth factor A

VEGFR:

Vascular endothelial growth factor receptor

References

  • Abman SH, Mourani PM, Sontag M (2008) Bronchopulmonary dysplasia: a genetic disease. Pediatrics 122:658–659

    PubMed  Google Scholar 

  • Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM (1999) Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 20:14–23

    CAS  PubMed  Google Scholar 

  • Adamson IY (1997) Development of lung structure. In: Crystal RG (ed) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, pp 993–1001

    Google Scholar 

  • Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A, Eydelman R, Strande L, Stahl G, Leone P, Bhandari V (2008) Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol 28:149–155

    CAS  PubMed  Google Scholar 

  • Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, Wygrecka M, Eul B, Kobrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE (2007) Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L537–L549

    CAS  PubMed  Google Scholar 

  • Alejandre-Alcazar MA, Michiels-Corsten M, Vicencio AG, Reiss I, Ryu J, de Krijger RR, Haddad GG, Tibboel D, Seeger W, Eickelberg O, Morty RE (2008) TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269

    CAS  PubMed  Google Scholar 

  • Altiok O, Yasumatsu R, Bingol-Karakoc G, Riese RJ, Stahlman MT, Dwyer W, Pierce RA, Bromme D, Weber E, Cataltepe S (2006) Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am J Respir Crit Care Med 173:318–326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ambalavanan N, Nicola T, Li P, Bulger A, Murphy-Ullrich J, Oparil S, Chen YF (2008) Role of matrix metalloproteinase-2 in newborn mouse lungs under hypoxic conditions. Pediatr Res 63:26–32

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asikainen TM, Ahmad A, Schneider BK, White CW (2005) Effect of preterm birth on hypoxia-inducible factors and vascular endothelial growth factor in primate lungs. Pediatr Pulmonol 40:538–546

    PubMed  Google Scholar 

  • Atkinson JJ, Holmbeck K, Yamada S, Birkedal-Hansen H, Parks WC, Senior RM (2005) Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Dev Dyn 232:1079–1090

    CAS  PubMed  Google Scholar 

  • Balinotti JE, Tiller CJ, Llapur CJ, Jones MH, Kimmel RN, Coates CE, Katz BP, Nguyen JT, Tepper RS (2009) Growth of the lung parenchyma early in life. Am J Respir Crit Care Med 179:134–137

    PubMed Central  PubMed  Google Scholar 

  • Basseres DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, Fenyus M, Kocher O, Golub T, Wong KK, Halmos B, Tenen DG (2006) Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol 26:1109–1123

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baybutt RC, Hu L, Molteni A (2000) Vitamin A deficiency injures lung and liver parenchyma and impairs function of rat type II pneumocytes. J Nutr 130:1159–1165

    CAS  PubMed  Google Scholar 

  • Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    CAS  PubMed  Google Scholar 

  • Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L (2007) Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem 282:3968–3976

    CAS  PubMed  Google Scholar 

  • Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 164:1971–1980

    CAS  PubMed  Google Scholar 

  • Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, Alvira CM, Rabinovitch M, Shinwell ES, Dixit A (2008) Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 294:L3–L14

    CAS  PubMed  Google Scholar 

  • Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Gauldie J (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173:2099–2108

    CAS  PubMed  Google Scholar 

  • Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873

    CAS  PubMed  Google Scholar 

  • Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C (2005) Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res 57:38R–46R

    PubMed  Google Scholar 

  • Brown E, James K (2009) The lung primordium an outpouching from the foregut! Evidence-based dogma or myth? J Pediatr Surg 44:607–615

    PubMed  Google Scholar 

  • Buch S, Han RN, Liu J, Moore A, Edelson JD, Freeman BA, Post M, Tanswell AK (1995) Basic fibroblast growth factor and growth factor receptor gene expression in 85% O2-exposed rat lung. Am J Physiol 268:L455–L464

    CAS  PubMed  Google Scholar 

  • Bucher U, Reid L (1961) Development of the mucus-secreting elements in human lung. Thorax 16:219–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burri PH (1974) The postnatal growth of the rat lung. 3. Morphology. Anat Rec 180:77–98

    CAS  PubMed  Google Scholar 

  • Burri PH (1984) Fetal and postnatal development of the lung. Annu Rev Physiol 46:617–628

    CAS  PubMed  Google Scholar 

  • Burri PH (1997) Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald J (ed) Lung growth and development. Marcel Dekker, New York, pp 1–35

    Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    PubMed  Google Scholar 

  • Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164

    CAS  PubMed  Google Scholar 

  • Cao L, Wang J, Tseu I, Luo D, Post M (2009) Maternal exposure to endotoxin delays alveolarization during postnatal rat lung development. Am J Physiol Lung Cell Mol Physiol 296:L726–L737

    CAS  PubMed  Google Scholar 

  • Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    CAS  PubMed  Google Scholar 

  • Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502

    CAS  PubMed  Google Scholar 

  • Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR (2005) FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288:L43–L51

    CAS  PubMed  Google Scholar 

  • Chang R, Andreoli S, Ng YS, Truong T, Smith SR, Wilson J, D’Amore PA (2004) VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 39:825–828; discussion 825–828

    PubMed  Google Scholar 

  • Chelly N, Mouhieddine-Gueddiche OB, Barlier-Mur AM, Chailley-Heu B, Bourbon JR (1999) Keratinocyte growth factor enhances maturation of fetal rat lung type II cells. Am J Respir Cell Mol Biol 20:423–432

    CAS  PubMed  Google Scholar 

  • Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, Shi W (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 288:L683–L691

    CAS  PubMed  Google Scholar 

  • Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC (2008) Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol 295:L584–L592

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clerch LB, Baras AS, Massaro GD, Hoffman EP, Massaro D (2004) DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation. Am J Physiol Lung Cell Mol Physiol 286:L411–L419

    CAS  PubMed  Google Scholar 

  • Clyman R, Cassady G, Kirklin JK, Collins M, Philips JB 3rd (2009) The role of patent ductus arteriosus ligation in bronchopulmonary dysplasia: reexamining a randomized controlled trial. J Pediatr 154:873–876

    PubMed Central  PubMed  Google Scholar 

  • Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494

    CAS  PubMed  Google Scholar 

  • Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777

    PubMed  Google Scholar 

  • Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J, Delacourt C (2002) High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 165:1384–1387

    PubMed  Google Scholar 

  • de Mello DE, Reid LM (2000) Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol 3:439–449

    Google Scholar 

  • de Mello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    Google Scholar 

  • De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  • De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q (2008) Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med 178:180–187

    PubMed Central  PubMed  Google Scholar 

  • DeLisser HM, Helmke BP, Cao G, Egan PM, Taichman D, Fehrenbach M, Zaman A, Cui Z, Mohan GS, Baldwin HS, Davies PF, Savani RC (2006) Loss of PECAM-1 function impairs alveolarization. J Biol Chem 281:8724–8731

    CAS  PubMed  Google Scholar 

  • Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22:142–150

    CAS  PubMed  Google Scholar 

  • Farkas L, Farkas D, Ask K, Moller A, Gauldie J, Margetts P, Inman M, Kolb M (2009) VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest 119:1298–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    CAS  PubMed  Google Scholar 

  • Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70

    CAS  PubMed  Google Scholar 

  • Frank L (2003) Protective effect of keratinocyte growth factor against lung abnormalities associated with hyperoxia in prematurely born rats. Biol Neonate 83:263–272

    CAS  PubMed  Google Scholar 

  • Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn 217:159–169

    CAS  PubMed  Google Scholar 

  • Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87:69–98

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groenman FA, Rutter M, Wang J, Caniggia I, Tibboel D, Post M (2007) Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 293:L557–L567

    CAS  PubMed  Google Scholar 

  • Hadchouel A, Decobert F, Franco-Montoya ML, Halphen I, Jarreau PH, Boucherat O, Martin E, Benachi A, Amselem S, Bourbon J, Danan C, Delacourt C (2008) Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development. PLoS One 3:e3188

    PubMed Central  PubMed  Google Scholar 

  • Hall SM, Hislop AA, Pierce CM, Haworth SG (2000) Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 23:194–203

    CAS  PubMed  Google Scholar 

  • Hall SM, Hislop AA, Haworth SG (2002) Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340

    CAS  PubMed  Google Scholar 

  • Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hislop AA, Haworth SG (1989) Airway size and structure in the normal fetal and infant lung and the effect of premature delivery and artificial ventilation. Am Rev Respir Dis 140:1717–1726

    CAS  PubMed  Google Scholar 

  • Hokuto I, Perl AK, Whitsett JA (2003) Prenatal, but not postnatal, inhibition of fibroblast growth factor receptor signaling causes emphysema. J Biol Chem 278:415–421

    CAS  PubMed  Google Scholar 

  • Hosford GE, Olson DM (2003) Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 285:L161–L168

    CAS  PubMed  Google Scholar 

  • Hyde DM, Blozis SA, Avdalovic MV, Putney LF, Dettorre R, Quesenberry NJ, Singh P, Tyler NK (2007) Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 293:L570–L579

    CAS  PubMed  Google Scholar 

  • Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607

    CAS  PubMed  Google Scholar 

  • Jeffery PK (1998) The development of large and small airways. Am J Respir Crit Care Med 157:S174–S180

    Google Scholar 

  • Jeffery PK, Li D (1997) Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J 10:1655–1662

    CAS  PubMed  Google Scholar 

  • Jeffery PK, Gaillard D, Moret S (1992) Human airway secretory cells during development and in mature airway epithelium. Eur Respir J 5:93–104

    CAS  PubMed  Google Scholar 

  • Kalinichenko VV, Lim L, Stolz DB, Shin B, Rausa FM, Clark J, Whitsett JA, Watkins SC, Costa RH (2001) Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol 235:489–506

    CAS  PubMed  Google Scholar 

  • Kaplan F, Comber J, Sladek R, Hudson TJ, Muglia LJ, Macrae T, Gagnon S, Asada M, Brewer JA, Sweezey NB (2003) The growth factor midkine is modulated by both glucocorticoid and retinoid in fetal lung development. Am J Respir Cell Mol Biol 28:33–41

    CAS  PubMed  Google Scholar 

  • Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kauffman SL, Burri PH, Weibel ER (1974) The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 180:63–76

    CAS  PubMed  Google Scholar 

  • Kaza AK, Kron IL, Leuwerke SM, Tribble CG, Laubach VE (2002) Keratinocyte growth factor enhances post-pneumonectomy lung growth by alveolar proliferation. Circulation 106:I120–I124

    PubMed  Google Scholar 

  • Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90:10705–10709

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115:839–848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215

    CAS  PubMed  Google Scholar 

  • Kotecha S, Wangoo A, Silverman M, Shaw RJ (1996) Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 128:464–469

    CAS  PubMed  Google Scholar 

  • Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, Abman SH (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529–L535

    CAS  PubMed  Google Scholar 

  • Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 291:L1068–L1078

    CAS  PubMed  Google Scholar 

  • Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987

    CAS  PubMed  Google Scholar 

  • Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH (2002) Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol 283:L555–L562

    PubMed  Google Scholar 

  • Le Cras TD, Spitzmiller RE, Albertine KH, Greenberg JM, Whitsett JA, Akeson AL (2004) VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Physiol Lung Cell Mol Physiol 287:L134–L142

    PubMed  Google Scholar 

  • Liebeskind A, Srinivasan S, Kaetzel D, Bruce M (2000) Retinoic acid stimulates immature lung fibroblast growth via a PDGF-mediated autocrine mechanism. Am J Physiol Lung Cell Mol Physiol 279:L81–L90

    CAS  PubMed  Google Scholar 

  • Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282

    CAS  PubMed  Google Scholar 

  • Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953

    CAS  PubMed  Google Scholar 

  • Liu C, Ikegami M, Stahlman MT, Dey CR, Whitsett JA (2003) Inhibition of alveolarization and altered pulmonary mechanics in mice expressing GATA-6. Am J Physiol Lung Cell Mol Physiol 285:L1246–L1254

    CAS  PubMed  Google Scholar 

  • Londhe VA, Nguyen HT, Jeng JM, Li X, Li C, Tiozzo C, Zhu N, Minoo P (2008) NF-kB induces lung maturation during mouse lung morphogenesis. Dev Dyn 237:328–338

    CAS  PubMed  Google Scholar 

  • Lumsden AB, McLean A, Lamb D (1984) Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 39:844–849

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda S, Suzuki S, Suzuki T, Endo M, Moriya T, Chida M, Kondo T, Sasano H (2002) Analysis of intrapulmonary vessels and epithelial-endothelial interactions in the human developing lung. Lab Invest 82:293–301

    PubMed  Google Scholar 

  • Mandeville I, Aubin J, LeBlanc M, Lalancette-Hebert M, Janelle MF, Tremblay GM, Jeannotte L (2006) Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maniscalco WM, Watkins RH, Roper JM, Staversky R, O’Reilly MA (2005) Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased VEGF expression. Pediatr Res 58:549–556

    CAS  PubMed  Google Scholar 

  • Massaro D, Massaro GD (1986) Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol 251:R218–R224

    CAS  PubMed  Google Scholar 

  • Massaro GD, Massaro D (1996) Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 270:L305–L310

    CAS  PubMed  Google Scholar 

  • Massaro GD, Massaro D (2000) Retinoic acid treatment partially rescues failed septation in rats and in mice. Am J Physiol Lung Cell Mol Physiol 278:L955–L960

    CAS  PubMed  Google Scholar 

  • Massaro GD, Massaro D, Chambon P (2003) Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 284:L431–L433

    CAS  PubMed  Google Scholar 

  • Massaro D, Massaro GD, Chambon P (2004) Lung development and regeneration. Marcel Dekker, New York

    Google Scholar 

  • Masters JR (1976) Epithelial-mesenchymal interaction during lung development: the effect of mesenchymal mass. Dev Biol 51:98–108

    CAS  PubMed  Google Scholar 

  • McDevitt TM, Gonzales LW, Savani RC, Ballard PL (2007) Role of endogenous TGF-beta in glucocorticoid-induced lung type II cell differentiation. Am J Physiol Lung Cell Mol Physiol 292:L249–L257

    CAS  PubMed  Google Scholar 

  • McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM (2000) Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 23:162–167

    CAS  PubMed  Google Scholar 

  • McGrath-Morrow SA, Cho C, Zhen L, Hicklin DJ, Tuder RM (2005) Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol 32:420–427

    CAS  PubMed  Google Scholar 

  • Medford AR, Douglas SK, Godinho SI, Uppington KM, Armstrong L, Gillespie KM, van Zyl B, Tetley TD, Ibrahim NB, Millar AB (2009) Vascular Endothelial Growth Factor (VEGF) isoform expression and activity in human and murine lung injury. Respir Res 10:27

    PubMed Central  PubMed  Google Scholar 

  • Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94:287–297

    CAS  PubMed  Google Scholar 

  • Mercer RR, Crapo JD (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69:756–765

    CAS  PubMed  Google Scholar 

  • Mercer RR, Russell ML, Roggli VL, Crapo JD (1994) Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10:613–624

    CAS  PubMed  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mielke G, Benda N (2001) Cardiac output and central distribution of blood flow in the human fetus. Circulation 103:1662–1668

    CAS  PubMed  Google Scholar 

  • Montedonico S, Sugimoto K, Felle P, Bannigan J, Puri P (2008) Prenatal treatment with retinoic acid promotes pulmonary alveologenesis in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 43:500–507

    PubMed  Google Scholar 

  • Morris DG, Sheppard D (2006) Pulmonary emphysema: when more is less. Physiology (Bethesda) 21:396–403

    CAS  Google Scholar 

  • Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20:54–57

    CAS  PubMed  Google Scholar 

  • Muehlethaler V, Kunig AM, Seedorf G, Balasubramaniam V, Abman SH (2008) Impaired VEGF and nitric oxide signaling after nitrofen exposure in rat fetal lung explants. Am J Physiol Lung Cell Mol Physiol 294:L110–L120

    CAS  PubMed  Google Scholar 

  • Mund SI, Stampanoni M, Schittny JC (2008) Developmental alveolarization of the mouse lung. Dev Dyn 237:2108–2116

    PubMed  Google Scholar 

  • Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts JD Jr (2007) TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293:L151–L161

    CAS  PubMed  Google Scholar 

  • Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P (2007) Disturbance of retinol transportation causes nitrofen-induced hypoplastic lung. J Pediatr Surg 42:345–349

    PubMed  Google Scholar 

  • Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121

    CAS  PubMed  Google Scholar 

  • Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM (2008) Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294:L1158–L1165

    CAS  PubMed Central  PubMed  Google Scholar 

  • Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, Jankov RP, Tanswell AK (2008) A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res 63:232–238

    CAS  PubMed  Google Scholar 

  • Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, Rottier R (2005) Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 288:L141–L149

    CAS  PubMed  Google Scholar 

  • Park MS, Rieger-Fackeldey E, Schanbacher BL, Cook AC, Bauer JA, Rogers LK, Hansen TN, Welty SE, Smith CV (2007) Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res 62:652–657

    CAS  PubMed  Google Scholar 

  • Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15

    CAS  PubMed  Google Scholar 

  • Patrone C, Cassel TN, Pettersson K, Piao YS, Cheng G, Ciana P, Maggi A, Warner M, Gustafsson JA, Nord M (2003) Regulation of postnatal lung development and homeostasis by estrogen receptor beta. Mol Cell Biol 23:8542–8552

    CAS  PubMed Central  PubMed  Google Scholar 

  • Perl AK, Gale E (2009) FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 297:L299–L308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol 272:L452–L460

    CAS  PubMed  Google Scholar 

  • Poelmann RE, Gittenberger-de Groot AC (2005) Apoptosis as an instrument in cardiovascular development. Birth Defects Res C Embryo Today 75:305–313

    CAS  PubMed  Google Scholar 

  • Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251:224–231

    CAS  PubMed  Google Scholar 

  • Post M, Souza P, Liu J, Tseu I, Wang J, Kuliszewski M, Tanswell AK (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115

    CAS  PubMed  Google Scholar 

  • Prodhan P, Kinane TB (2002) Developmental paradigms in terminal lung development. Bioessays 24:1052–1059

    CAS  PubMed  Google Scholar 

  • Raoul W, Chailley-Heu B, Barlier-Mur AM, Delacourt C, Maitre B, Bourbon JR (2004) Effects of vascular endothelial growth factor on isolated fetal alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 286:L1293–L1301

    CAS  PubMed  Google Scholar 

  • Roth-Kleiner M, Post M (2005) Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40:113–134

    PubMed  Google Scholar 

  • Roth-Kleiner M, Berger TM, Tarek MR, Burri PH, Schittny JC (2005) Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Dev Dyn 233:1261–1271

    CAS  PubMed  Google Scholar 

  • Schachtner SK, Wang Y, Scott Baldwin H (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165

    CAS  PubMed  Google Scholar 

  • Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793

    CAS  PubMed  Google Scholar 

  • Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23:11–18

    CAS  PubMed  Google Scholar 

  • Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294:L246–L254

    CAS  PubMed  Google Scholar 

  • Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY (2004) MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res 55:794–801

    CAS  PubMed  Google Scholar 

  • Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D (2000) Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 95:123–132

    CAS  PubMed  Google Scholar 

  • Schwarz MA, Caldwell L, Cafasso D, Zheng H (2009) Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 296:L71–L81

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141

    CAS  PubMed  Google Scholar 

  • Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132:35–47

    CAS  PubMed  Google Scholar 

  • Shannon JM, Nielsen LD, Gebb SA, Randell SH (1998) Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev Dyn 212:482–494

    CAS  PubMed  Google Scholar 

  • Shannon JM, Gebb SA, Nielsen LD (1999) Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 126:1675–1688

    CAS  PubMed  Google Scholar 

  • Shehata SM, Tibboel D, Sharma HS, Mooi WJ (1999) Impaired structural remodelling of pulmonary arteries in newborns with congenital diaphragmatic hernia: a histological study of 29 cases. J Pathol 189:112–118

    CAS  PubMed  Google Scholar 

  • Shenai JP (1999) Vitamin A, supplementation in very low birth weight neonates: rationale and evidence. Pediatrics 104:1369–1374

    CAS  PubMed  Google Scholar 

  • Shifren A, Durmowicz AG, Knutsen RH, Hirano E, Mecham RP (2007) Elastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema. Am J Physiol Lung Cell Mol Physiol 292:L778–L787

    CAS  PubMed  Google Scholar 

  • Shiratori M, Oshika E, Ung LP, Singh G, Shinozuka H, Warburton D, Michalopoulos G, Katyal SL (1996) Keratinocyte growth factor and embryonic rat lung morphogenesis. Am J Respir Cell Mol Biol 15:328–338

    CAS  PubMed  Google Scholar 

  • Snyder JM, Jenkins-Moore M, Jackson SK, Goss KL, Dai HH, Bangsund PJ, Giguere V, McGowan SE (2005) Alveolarization in retinoic acid receptor-beta-deficient mice. Pediatr Res 57:384–391

    CAS  PubMed  Google Scholar 

  • Stam H, van den Beek A, Grunberg K, Stijnen T, Tiddens HA, Versprille A (1996) Pulmonary diffusing capacity at reduced alveolar volumes in children. Pediatr Pulmonol 21:84–89

    CAS  PubMed  Google Scholar 

  • Stiles AD, Chrysis D, Jarvis HW, Brighton B, Moats-Staats BM (2001) Programmed cell death in normal fetal rat lung development. Exp Lung Res 27:569–587

    CAS  PubMed  Google Scholar 

  • Sugimoto K, Takayasu H, Nakazawa N, Montedonico S, Puri P (2008) Prenatal treatment with retinoic acid accelerates type 1 alveolar cell proliferation of the hypoplastic lung in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 43:367–372

    PubMed  Google Scholar 

  • Tambunting F, Beharry KD, Waltzman J, Modanlou HD (2005) Impaired lung vascular endothelial growth factor in extremely premature baboons developing bronchopulmonary dysplasia/chronic lung disease. J Investig Med 53:253–262

    CAS  PubMed  Google Scholar 

  • Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97:1559–1566; discussion 1549

    CAS  PubMed  Google Scholar 

  • Thebaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486

    CAS  PubMed  Google Scholar 

  • Thibeault DW, Mabry SM, Ekekezie II, Truog WE (2000) Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics 106:1452–1459

    CAS  PubMed  Google Scholar 

  • Tschanz SA, Haenni B, Burri PH (2002) Glucocorticoid induced impairment of lung structure assessed by digital image analysis. Eur J Pediatr 161:26–30

    CAS  PubMed  Google Scholar 

  • Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallon J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC (1999) Multiple left-right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 96:11376–11381

    CAS  PubMed Central  PubMed  Google Scholar 

  • van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288:L167–L178

    PubMed  Google Scholar 

  • Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S, Blackmon L, Jobe A (2006) Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117:S52–S56

    PubMed  Google Scholar 

  • Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131:953–964

    CAS  PubMed  Google Scholar 

  • Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97:210–215

    CAS  PubMed  Google Scholar 

  • Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK (2003) Septation and separation within the outflow tract of the developing heart. J Anat 202:327–342

    PubMed Central  PubMed  Google Scholar 

  • Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623

    CAS  PubMed  Google Scholar 

  • Welsh DA, Summer WR, Dobard EP, Nelson S, Mason CM (2000) Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am J Respir Crit Care Med 162:1081–1086

    CAS  PubMed  Google Scholar 

  • Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY (2000) Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 23:320–326

    CAS  PubMed  Google Scholar 

  • Wert SE, Dey CR, Blair PA, Kimura S, Whitsett JA (2002) Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation. Dev Biol 242:75–87

    CAS  PubMed  Google Scholar 

  • Yamamoto Y, Shiraishi I, Dai P, Hamaoka K, Takamatsu T (2007) Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1. Anat Rec (Hoboken) 290:958–973

    CAS  Google Scholar 

  • Yang L, Naltner A, Yan C (2003) Overexpression of dominant negative retinoic acid receptor alpha causes alveolar abnormality in transgenic neonatal lungs. Endocrinology 144:3004–3011

    CAS  PubMed  Google Scholar 

  • Yi M, Belcastro R, Shek S, Luo D, Post M, Tanswell AK (2006) Fibroblast growth factor-2 and receptor-1alpha(IIIc) regulate postnatal rat lung cell apoptosis. Am J Respir Crit Care Med 174:581–589

    CAS  PubMed  Google Scholar 

  • Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH (1987) The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 67:247–267

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Post .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Joza, S., Post, M. (2015). Development of the Respiratory System (Including the Preterm Infant). In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics