Skip to main content

An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem

  • Conference paper
Evolutionary Computation in Combinatorial Optimization (EvoCOP 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5482))

Abstract

In this paper, an Artificial Immune System (AIS) for the multi-mode resource-constrained project scheduling problem (MRCPSP), in which multiple execution modes are available for each of the activities of the project, is presented. The AIS algorithm makes use of mechanisms which are inspired on the vertebrate immune system performed on an initial population set. This population set is generated with a controlled search method, based on experimental results which revealed a link between predefined profit values of a mode assignment and its makespan. The impact of the algorithmic parameters and the initial population generation method is observed and detailed comparative computational results for the MRCPSP are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, M.M., Rahman, M.S., Kaykobad, M., Manning, E.G., Shoja, G.C.: Solving the Multidimensional Multiple-Choice Knapsack Problem by constructing convex hulls. Computers and Operations Research 33, 1259–1273 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alcaraz, J., Maroto, C., Ruiz, R.: Solving the multi-mode resource-constrained project scheduling problem with genetic algorithms. Journal of the Operational Research Society 54, 614–626 (2003)

    Article  MATH  Google Scholar 

  3. Alvarez-Valdes, R., Tamarit, J.M.: Heuristic algorithms for resource-constrained project scheduling: A review and an empirical analysis. In: Slowinski, R., Weglarz, J. (eds.) Advances in Project Scheduling, pp. 113–134. Elsevier, Amsterdam (1989)

    Google Scholar 

  4. Anderson, E.J., Ferris, M.C.: Genetic Algorithm for Combinatorial Optimisation: The Assembly Line Balancing Problem. ORSA Journal on Computing 6, 161–173 (1994)

    Article  MATH  Google Scholar 

  5. Argawal, R., Tiwari, M.K., Mukherjee, S.K.: Artificial Immune System Based Approach for Solving Resource Constraint Project Scheduling Problem. International Journal of Advanced Manufacturing Technology 34, 584–593 (2007)

    Article  Google Scholar 

  6. Boctor, F.: Heuristics for scheduling projects with resource restrictions and several resource-duration modes. International Journal of Production Research 31, 2547–2558 (1993)

    Article  Google Scholar 

  7. Boctor, F.: An adaption of the simulated annealing for solving resource-constrained project scheduling problems. International Journal of Production Research 34, 2335–2351 (1996)

    Article  MATH  Google Scholar 

  8. Boctor, F.: A new and effcient heuristic for scheduling projects with resource restrictions and multiple execution modes. European Journal of Operational Research 90, 349–361 (1996)

    Article  MATH  Google Scholar 

  9. Bouleimen, K., Lecocq, H.: A new effcient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. European Journal of Operational Research 149, 268–281 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coello Coello, C.A., Rivera, D.C., Cortés, N.C.: Use of an Artificial Immune System for Job Shop Scheduling. In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 1–10. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Davis, E.W., Patterson, J.H.: A comparison of heurstic and optimum solutions in resource-constrained project scheduling. Management Science 21, 944–955 (1975)

    Article  Google Scholar 

  12. Debels, D., Vanhoucke, M.: A bi-population based genetic algorithm for the resource-constrained project scheduling problem. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3483, pp. 378–387. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. De Castro, L.N., Timmis, J.I.: Artificial immune systems: a novel paradigm for pattern recognition. In: Alonso, L., Corchado, J., Fyfe, C. (eds.) Artificial Neural Networks in Pattern Recognition, pp. 67–84. University of Paisley (2002)

    Google Scholar 

  14. Drexl, A., Grünewald, J.: Nonpreemptive multi-mode resource-constrained project scheduling. IIE Transactions 25, 74–81 (1993)

    Article  Google Scholar 

  15. Engin, O., Döyen, A.: A New Approach to Solve Hybrid Flow Shop Scheduling Problems by Artificial Immune System. Future Generation Computer Systems 20, 1083–1095 (2004)

    Article  Google Scholar 

  16. Geem, Z.W., Kim, J.H., Loganathan, G.V.: A New Heuristic Optimization Algorithm: Harmony Search. Simulation 76, 60–68 (2001)

    Article  Google Scholar 

  17. Hart, E., Ross, P., Nelson, J.: Producing robust schedules via an artificial immune system. In: Proceedings of the ICEC 1998, pp. 464–469 (1998)

    Google Scholar 

  18. Hartmann, S., Drexl, A.: Project scheduling with multiple modes: a comparison of exact algorithms. Networks 32, 283–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hartmann, S.: Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research 102, 111–135 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hifi, M., Michrafy, M., Sbihi, A.: Heuristic algorithms for the multiple-choice multidimensional knapsack problem. Journal of Operational Research Society 55, 1323–1332 (2004)

    Article  MATH  Google Scholar 

  21. Jarboui, B., Damak, N., Siarry, P., Rebai, A.: A combinatorial particle swarm optimization for solving multi-mode resource-constrained project scheduling problems. Applied Mathematics and Computation 195, 299–308 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jozefowska, J., Mika, M., Rozycki, R., Waligora, G., Weglarz, J.: Simulated annealing for multi-mode resource-constrained project scheduling. Annals of Operations Research 102, 137–155 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Knotts, G., Dror, M., Hartman, B.: Agent-based project scheduling. IIE Transactions 32, 387–401 (2000)

    Google Scholar 

  24. Kolisch, R., Sprecher, A., Drexl, A.: Characterization and generation of a general class of resource-constrained project scheduling problems. Management Science 41, 1693–1703 (1995)

    Article  MATH  Google Scholar 

  25. Kolisch, R., Sprecher, A.: PSPLIB - a project scheduling problem library. European Journal of Operational Research 96, 205–216 (1996)

    Article  MATH  Google Scholar 

  26. Kolisch, R.: Serial and parallel resourceconstrained project scheduling methods revisited: Theory and computation. European Journal of Operational Research 90, 320–333 (1996)

    Article  MATH  Google Scholar 

  27. Kolisch, R., Drexl, A.: Local search for nonpreemptive multi-mode resource-constrained project scheduling. IIE Transactions 29, 987–999 (1997)

    Google Scholar 

  28. Kolisch, R., Hartmann, S.: Project Scheduling - Recent Models, Algorithms and Applications. Kluwer Academic Publishers, Boston (1999)

    Google Scholar 

  29. Kolisch, R., Hartmann, S.: Experimental investigation of heuristics for resource-constrained project scheduling: An update. European Journal of Operational Research 174, 23–37 (2006)

    Article  MATH  Google Scholar 

  30. Lova, A., Tormos, P., Barber, F.: Multi-mode resource-constrained project scheduling: Scheduling schemes, priority rules and mode selection rules. Inteligencia Artificial 30, 69–86 (2006)

    Google Scholar 

  31. Mori, M., Tseng, C.: A genetic algorithm for multi-mode resource-constrained project scheduling problem. European Journal of Operational Research 100, 134–141 (1997)

    Article  MATH  Google Scholar 

  32. Nonobe, K., Ibaraki, T.: Formulation and tabu search algorithm for the resourceconstrained project scheduling problem (RCPSP). Technical report, Kyoto University (2001)

    Google Scholar 

  33. Özdamar, L., Ulusoy, G.: A local constraint based analysis approach to project scheduling under general resource constraints. European Journal of Operational Research 79, 287–298 (1994)

    Article  MATH  Google Scholar 

  34. Özdamar, L.: A genetic algorithm approach to a general category project scheduling problem. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 29, 44–59 (1999)

    Article  Google Scholar 

  35. Patterson, J., Slowinski, R., Talbot, F., Weglarz, J.: Advances in Project Scheduling. Elsevier, Amsterdam (1989)

    Google Scholar 

  36. Ranjbar, M., De Reyck, B., Kianfar, F.: A hybrid scatter-search for the discrete time/resource trade-off problem in project scheduling. European Journal of Operational Research 193, 35–48 (2009)

    Article  MATH  Google Scholar 

  37. Sbihi, A.: A best first search exact algorithm for the Multiple-choice Multidimensional Knapsack Problem. Journal of Combinatorial Optimization 13, 337–351 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  38. Shahriar, A.Z.M., Akbar, M.M., Rahman, M.S., Newton, M.A.H.: A multiprocessor based heuristic for multi-dimensional multiple-choice knapsack problem. Journal of supercomputing 43, 257–280 (2008)

    Article  Google Scholar 

  39. Slowinski, R., Soniewicki, B., Weglarz, J.: DSS for multiobjective project scheduling. European Journal of Operational Research 79, 220–229 (1994)

    Article  MATH  Google Scholar 

  40. Sprecher, A., Hartmann, S., Drexl, A.: An exact algorithm for project scheduling with multiple modes. OR Spektrum 19, 195–203 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sprecher, A., Drexl, A.: Solving multi-mode resource-constrained project scheduling problems by a simple, general and powerful sequencing algorithm. European Journal of Operational Research 107, 431–450 (1998)

    Article  MATH  Google Scholar 

  42. Talbot, F.: Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. Management Science 28(10), 1197–1210 (1982)

    Article  MATH  Google Scholar 

  43. Vanhoucke, M., Coelho, J., Debels, D., Maenhout, B., Tavares, L.: An evaluation of the adequacy of project network generators with systematically sampled networks. European Journal of Operational Research 187, 511–524 (2008)

    Article  MATH  Google Scholar 

  44. Zhang, H., Tam, C., Li, H.: Multimode project scheduling based on particle swarm optimization. Computer-Aided Civil and Infrastructure Engineering 21, 93–103 (2006)

    Article  Google Scholar 

  45. Zhu, G., Bard, J., Tu, G.: A branch-and-cut procedure for the multimode resource-constrained project-scheduling problem. Journal on Computing 18, 377–390 (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Peteghem, V., Vanhoucke, M. (2009). An Artificial Immune System for the Multi-Mode Resource-Constrained Project Scheduling Problem. In: Cotta, C., Cowling, P. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2009. Lecture Notes in Computer Science, vol 5482. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01009-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01009-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01008-8

  • Online ISBN: 978-3-642-01009-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics