Skip to main content

Nanoscale Materials Defect Characterisation

  • Chapter
  • First Online:
Ion Beams in Nanoscience and Technology

Part of the book series: Particle Acceleration and Detection ((PARTICLE))

  • 1333 Accesses

Abstract

Nanoscale materials are characterized by the low dimensionality of their building blocks. A large interface area density with an interface area of the order of 1,000 cm2 is easily found in multiple quantum well structures with 1  μm thickness and a 2–5 nm period. Hence, the interface behaviour will dominate or have a crucial impact on the properties of these structures. Additional defects will be mostly located at such interfaces in the form of planar or surface defects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Stark, Phys. Z., 13 (1912) 973.

    Google Scholar 

  2. M.T. Robinson and O.S. Oen, Phys. Rev., 132 (1963) 2385.

    Article  CAS  ADS  Google Scholar 

  3. R.S. Nelson and M.W. Thompson, Phil. Mag., 8 (1963) 1677.

    Article  CAS  ADS  Google Scholar 

  4. J.A. Davies, Foreign atom location, Channelling: Theory, Observation and Applications, John Wiley & Sons Ltd., New York, Chap. 13, ISBN 0-471-61510-2 (1973) 391–413.

    Google Scholar 

  5. L.C. Feldman, J.W. Mayer and S.T. Picraux, Materials Analysis by Ion Channelling: Submicron Crystallography, Academic Press, Inc., ISBN 0-12-252680-5 (1982).

    Google Scholar 

  6. D.S. Gemmell, Rev. Mod. Phys., 46 (1974) 129–227.

    Article  CAS  ADS  Google Scholar 

  7. E. Bøgh, Phys. Rev. Lett., 19 (1967) 61.

    Article  ADS  Google Scholar 

  8. Y. Quéré, Phys. Status Solidi., 30 (1968) 713.

    Article  Google Scholar 

  9. M. Mazzer, A.V. Drigo, F. Romanato, G. Salviati and L. Lazzarini, Phys. Rev. B, 56 (1997) 6895–6910.

    Article  CAS  ADS  Google Scholar 

  10. K. Gärtner, Nucl. Instrum. Methods Phys. Res. B, 132 (1997) 147–158.

    Article  ADS  Google Scholar 

  11. H. Nakano and Y. Kido, J. Appl. Phys., 71 (1992) 133–139.

    Article  CAS  ADS  Google Scholar 

  12. A. Dygo and A. Turos, Phys. Rev. B, 40 (1989) 7704.

    Article  CAS  ADS  Google Scholar 

  13. J. Lindhard, Dansk. Vid. Selsk. Mat. Fys. Medd., 34(14) (1965).

    Google Scholar 

  14. G. Lulli, E. Albertazzi, M. Bianconi, A. Satta, S. Balboni and L. Colombo, Phys. Rev. B, 69 (2004) 165216.

    Article  ADS  CAS  Google Scholar 

  15. G. Lulli, E. Albertazzi, M. Bianconi, A. Satta, S. Balboni, L. Colombo and A. Uguzzoni, Nucl. Instrum. Methods Phys. Res. B, 230 (2005) 613–618.

    Article  CAS  ADS  Google Scholar 

  16. K. Lorenz, U. Wahl, E. Alves, E. Nogales, S. Dalmasso, R.W. Martin, K.P. O’Donnell, M. Wojdak, A. Braud, T. Monteiro, T. Wojtowicz, P. Ruterana, S. Ruffenach and O. Briot, Opt. Mat., 28 (2006) 750–758.

    Article  CAS  Google Scholar 

  17. F. Gloux, T. Wojtowicz, P. Ruterana, K. Lorenz and E. Alves, J. Appl. Phys., 100 (2006) 073520.

    Article  ADS  CAS  Google Scholar 

  18. B. Gil (Ed.), Low-Dimensional Nitride Semiconductors, Oxford University Press, Oxford (2002).

    Google Scholar 

  19. T.M. Smeeton, M.J. Kappers, J.S. Barnard, M.E. Vickers and C.J. Humphreys, Appl. Phys. Lett., 83 (2003) 5419; A. Rosenauer, D. Gerthsen and V. Potin, Phys. Status Solidi. A, 203 (2006) 176.

    Article  CAS  ADS  Google Scholar 

  20. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, R.W. Martin, M.E. White, E. Alves, A.D. Sequeira and N. Franco, Mat. Sci. Eng., B93 (2002) 163–167.

    CAS  Google Scholar 

  21. N.P. Barradas, C. Jeynes and R.P. Webb, Appl. Phys. Lett., 77 (1997) 291.

    Article  ADS  Google Scholar 

  22. L. Vegard, Z. Phys., 5 (1921) 17.

    Article  CAS  ADS  Google Scholar 

  23. E. Alves, S. Pereira, M.R. Correia, E. Pereira, A.D. Sequeira and N. Franco, Nucl. Instrum. Methods Phys. Res. B, 190 (2002) 560–564.

    Article  CAS  ADS  Google Scholar 

  24. S. Pereira, M.R. Correia, E. Pereira, K.P. O’Donnell, E. Alves, A.D. Sequeira, N. Franco, I.M. Watson and C.J. Deatcher, Appl. Phys. Lett., 80 (2002) 3913.

    Article  CAS  ADS  Google Scholar 

  25. S. Pereira, M.R. Correia, E. Alves and K.P. O’Donnell, Appl. Phys. Lett., 87 (2005) 136101.

    Article  ADS  CAS  Google Scholar 

  26. S.M. de Sousa Pereira, K.P. O’Donnell and E. Alves, Ad. Funct. Mater., 17 (2006) 37.

    Article  CAS  Google Scholar 

  27. R. People and J.C. Bean, Appl. Phys. Lett., 47 (1985) 322.

    Article  CAS  ADS  Google Scholar 

  28. K. Lorentz, N. Franco, E. Alves, I.M. Watson, R.W. Martin and K.P. O’Donnell, Phys. Rev. Lett., 97 (2006) 85501.

    Article  ADS  CAS  Google Scholar 

  29. P.J.M. Smulders and D.O. Boerma, Nucl. Instrum. Methods Phys. Res. B, 29 (1987) 471.

    Article  ADS  Google Scholar 

  30. K.L. Wang, S. Tong, A. Khitun, J.L. Liu and G. Jin, Self-assembled germanium nano-islands on silicon and potential applications, T. Steiner (Ed.) Semiconductor Nanostructures for Optoelectronic Applications, Artech House, Inc., London, Chap. 9.

    Google Scholar 

  31. D.J. Eaglesham and M. Cerullo, Phys. Rev. Lett., 64 (1990) 1943.

    Article  CAS  PubMed  ADS  Google Scholar 

  32. A.A. Shlyaev, M. Shibata and M. Ichikawa, Phys. Rev. B, 62 (2000) 1540.

    Article  ADS  Google Scholar 

  33. A.A. Shklyaev and M. Ichikawa, Appl. Phys. Lett., 80 (2002) 1432.

    Article  CAS  ADS  Google Scholar 

  34. A. Fonseca, E. Alves, J.P. Leitão, M.C. Carmo and A.I. Nikiforov, Mater. Sci. Eng. B, 124 (2005) 462.

    Article  CAS  Google Scholar 

  35. M.B.H. Breese, D.N. Jamieson and P.J.C. King, Materials Analysis Using a Nuclear Microprobe, Wiley, New York (1996).

    Google Scholar 

  36. L.C. Feldman and B.R. Appleton, Phys. Rev. B, 8 (1973) 935.

    Article  CAS  ADS  Google Scholar 

  37. M.B.H. Breese, P.J.C. King, J. Whitehurst, G.R. Booker, G.W. Grime, F. Watt, L.T. Romano and E.H.C. Parker, J. Appl. Phys., 73 (1993) 2640.

    Article  CAS  ADS  Google Scholar 

  38. M.B.H. Breese, P.J.C. King, P.J.M. Smulders and G.W. Grime, Phys. Rev. B 51, (1995) 2742.

    Article  CAS  ADS  Google Scholar 

  39. P.J.C. King, M.B.H. Breese, P.R. Wilshaw and G.W. Grime, Phys. Rev. B 51 (1995) 2732.

    Article  CAS  ADS  Google Scholar 

  40. P.J.C. King, M.B.H. Breese, P.J.M. Smulders, P.R. Wilshaw and G.W. Grime, Phys. Rev. Lett., 74 (1995) 411.

    Article  CAS  PubMed  ADS  Google Scholar 

  41. P.J.C. King, M.B.H. Breese, D. Meekeson, P.J.M. Smulders, P.R. Wilshaw and G.W. Grime, J. Appl. Phys., 80 (1996) 2671.

    Article  CAS  ADS  Google Scholar 

  42. P.J.C. King, M.B.H. Breese, P.J.M. Smulders, A.J. Wilkinson, G.R. Booker, E.H.C. Parker and G.W. Grime, Appl. Phys. Lett., 67 (1995) 3566.

    Article  CAS  ADS  Google Scholar 

  43. M.B.H. Breese, L.C. Alves, T. Hoechbauer and M. Nastasi, Appl. Phys. Lett., 77 (2000) 268.

    Article  CAS  ADS  Google Scholar 

  44. M.B.H. Breese, E.J. Teo, M.A. Rana, L. Huang, J.A. van Kan, F. Watt and P.J.C. King, Phys. Rev. Lett., 92 (2004) 045503.

    Article  CAS  PubMed  ADS  Google Scholar 

  45. F. Watt, J.A. van Kan, I. Rajta, A.A. Bettiol, T.F. Choo, M.B.H. Breese and T. Osipowicz, Nucl. Instrum. Methods B, 210 (2003) 14.

    Article  CAS  ADS  Google Scholar 

  46. J.A. van Kan, A.A. Bettiol and F. Watt, Appl. Phys. Lett., 83 (2003) 1629.

    Article  ADS  CAS  Google Scholar 

  47. D.G. de Kerckhove, M.B.H. Breese and G.W. Grime, Nucl. Instrum. Methods B, 129 (1997) 534.

    Article  ADS  Google Scholar 

  48. D.G. de Kerckhove, M.B.H. Breese, A.G. Wilkinson and G.W. Grime, Nucl. Instrum. Methods B, 136–138 (1998) 1240.

    Google Scholar 

  49. D.G. de Kerckhove, M.B.H. Breese and G.W. Grime, Nucl. Instrum. Methods B, 140 (1998) 199.

    Article  ADS  Google Scholar 

  50. M.B.H. Breese, P.J.C. King, G.W. Grime, P.J.M. Smulders, L.E. Seiberling and M.A. Boshart, Phys. Rev. B, 53 (1996) 8267.

    Article  CAS  ADS  Google Scholar 

  51. M.B.H. Breese and P.J.M. Smulders, Phys. Rev. Lett., 81 (1998) 5157.

    Article  CAS  ADS  Google Scholar 

  52. M.B.H. Breese and P.J.M. Smulders, Nucl. Instrum. Methods B, 145 (1998) 346.

    Article  CAS  ADS  Google Scholar 

  53. J.A. Ellison, Nucl, Phys. B, 206 (1982) 205.

    Article  ADS  Google Scholar 

  54. S.T. Picraux, W.R. Allen, R.M. Biefeld, J.A. Ellison and W.K. Chu, Phys. Rev. Lett., 54 (1985) 2355.

    Article  CAS  PubMed  ADS  Google Scholar 

  55. W.K. Chu, W.R. Allen, S.T. Picraux, J.A. Ellison, Phys. Rev. B, 42 (1990) 5923.

    Article  ADS  Google Scholar 

  56. P.J.M. Smulders, D.O. Boerma and M. Shaanan, Nucl. Instrum. Methods B, 45 (1990) 450.

    Article  ADS  Google Scholar 

  57. P.J.M. Smulders, Nucl. Instrum. Methods B, 94 (1994) 595.

    Article  CAS  ADS  Google Scholar 

  58. M.B.H. Breese, M.A. Rana, T. Osipowicz and E.J. Teo, Phys. Rev. Lett., 93 (2004) 105505.

    Article  CAS  PubMed  ADS  Google Scholar 

  59. M.B.H. Breese, L. Huang, E.J. Teo, P.J.C. King and P.R. Wilshaw, Appl. Phys. Lett., 87 (2005) 211907.

    Article  ADS  CAS  Google Scholar 

  60. C.J. Gibbings, C.G. Tuppen and M. Hockly, Appl. Phys. Lett., 54 (1989) 148.

    Article  CAS  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Alves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Alves, E., Breese, M. (2009). Nanoscale Materials Defect Characterisation. In: Hellborg, R., Whitlow, H., Zhang, Y. (eds) Ion Beams in Nanoscience and Technology. Particle Acceleration and Detection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00623-4_14

Download citation

Publish with us

Policies and ethics