Skip to main content

Cell Migration along the Basement Membrane during Wound Repair. The Corneal Endothelium as a Model System

  • Chapter
Bioengineering Research of Chronic Wounds

Part of the book series: Studies in Mechanobiology, Tissue Engineering and Biomaterials ((SMTEB,volume 1))

Abstract

The vertebrate corneal endothelium serves as a model system for investigating the role of cell migration during wound repair along the natural basement membrane. As a tissue monolayer, the cells reside on their basement membrane, Descemet’s membrane, which serves to modify many cellular behaviors during the injury-induced migratory response. Because the tissue is not directly dependent on either blood or nerve supplies, it is readily amendable to organ culture, where it can be easily maintained and experiments performed on the cells in situ. In addition, results obtained from work using tissue cultured corneal endothelial cells have augmented our understanding of the various pathways that are used for triggering cell movement during in vitro wound repair. The initiation of a migratory response during wound repair involves a multitude of various cellular mechanisms and structural changes that result in the activation of several biochemical pathways and modifications to cell shape as well as the reorganization of the actin cytoskeleton. These changes provide a means for the endothelial cell to translocate along Descemet’s membrane into the wound region in order to permit the repopulation of the area with the eventual reestablishment of an intact and functional monolayer. Many of these biochemical and morphological alterations appear to be mediated by various growth factors such as fibroblast growth factor, epidermal growth factor and transforming growth factor-beta. Various biochemical pathways are stimulated after an injury, including phospholipase C, phosphatidylinositol-3 kinase, protein kinase C, Rho, Rac, cdc42 and arachidonic acid metabolism which mediate several events during wound repair such as cell proliferation, epithelial-mesenchymal transition, spreading and the extension of cellular processes. In addition, despite residing on a basement membrane endothelial cells respond to injury by secreting various extracellular matrix components at the cell/basement membrane interface that aids in mediating their movement along Descemet’s membrane, which also appears to be regulated in part by protease activity. This review discusses the role of migration in corneal endothelial wound healing. How movement is modified when it occurs during in vitro as opposed to in vivo or organ cultured wound healing will also be examined as will the differences between the cellular responses to large versus small sized wounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abercrombie, M., Heaysman, J.E.M.: Observations on the social behaviour of cells in tissue culture. I. Speed of movement in chick heart fibroblasts in relation to their mutual contacts. Exp. Cell. Res. 5, 111–121 (1953)

    Article  Google Scholar 

  • Armstrong, P.B.: The control of cell motility during embryogenesis. Cancer Metastasis Rev. 4, 59–79 (1985)

    Article  Google Scholar 

  • Bard, J.B.L., Hay, E.D., Meller, S.M.: Formation of the endothelium of the avian cornea: A study of cell movement in vivo. Dev. Biol. 42, 334–361 (1975)

    Article  Google Scholar 

  • Barry, P.A., Petroll, W.M., Andrews, P.M., Cavanagh, H.D., Jester, J.V.: The special organization of corneal endothelial cytoskeletal proteins and their relationship to the apical junctional complex. Invest. Ophthalmol. Vis. Sci. 36, 1115–1124 (1995)

    Google Scholar 

  • Beach, R.S., Kenney, M.C.: Altered rabbit endothelial phenotypic expression in response to human fibronectin. Biochem. Biophys. Res. Comm. 108, 904–909 (1982)

    Article  Google Scholar 

  • Bement, W.M., Forscher, P., Mooseker, M.S.: A novel cytoskeletal structure involved in purse string wound closure and cell polarity maintenance. J. Cell. Biol. 121, 565–578 (1993)

    Article  Google Scholar 

  • Bershadsky, A.D., Futerman, A.H.: Disruption of the Golgi apparatus by brefeldin A blocks cell polarization and inhibits directed cell migration. Proc. Natl. Acad. Sci. USA 91, 5686–5689 (1994)

    Article  Google Scholar 

  • Blake, D.A., Yu, H., Young, D.L., Caldwell, D.R.: Matrix stimulates the proliferation of human corneal endothelial cells in culture. Invest Ophthalmol. Vis. Sci. 38, 1119–1129 (1997)

    Google Scholar 

  • Blat, C., Villaudy, J., Harel, L.: Density-dependent inhibition of mouse embryo fibroblast growth: involvement of IGFBP-3. Exp. Cell. Res. 215, 114–118 (1994)

    Article  Google Scholar 

  • Bogatcheva, N.V., Verin, A.D.: The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc. Res. 76, 202–207 (2009)

    Article  Google Scholar 

  • Bonanno, J.A.: Identity and regulation of ion transport mechanisms in the corneal endothelium. Prog. Retin. Eye Res. 22, 69–94 (2003)

    Article  MathSciNet  Google Scholar 

  • Bourne, W.M., Nelson, L.R., Hodge, D.O.: Central corneal endothelial cell changes over a ten-year period. Invest. Ophthalmol. Vis. Sci. 38, 779–782 (1997)

    Google Scholar 

  • Carbajal, J.M., Gratrix, M.L., Yu, C.-H., Schaeffer Jr., R.C.: ROCK mediates thrombin’s endothelial barrier dysfunction. Amer. J. Physiol. Cell. Physiol. 279, C195–C204 (2000)

    Google Scholar 

  • Carlson, C.B., Lawler, J., Mosher, D.F.: Structures of thrombospondins. Cell. Mol. Life Sci. 65, 672–686 (2008)

    Article  Google Scholar 

  • Chen, K.-H., Hsu, W.-M., Chiang, C.-C., Li, Y.-S.: Transforming growth factor-β2 inhibition of corneal endothelial proliferation mediated by prostaglandin. Curr. Eye Res. 26, 363–370 (2003)

    Article  Google Scholar 

  • Chifflet, S., Hernández, J.A., Grasso, S., Cirillo, A.: Nonspecific depolarization of the plasma membrane potential induces cytoskeletal modifications of bovine corneal endothelial cells in culture. Exp. Cell. Res. 282, 1–13 (2003)

    Article  Google Scholar 

  • Chun, J., Auer, K.A., Jacobson, B.S.: Arachidonic initiated protein kinase C activation regulates HeLa cell spreading on a gelatin substrate by inducing F-actin formation and exocytotic upregulation of β1integrin. J. Cell. Physiol. 173, 361–370 (1997)

    Article  Google Scholar 

  • Cintron, C., Covington, H.I., Kublin, C.L.: Morphogenesis of rabbit corneal endothelium. Curr. Eye Res. 7, 913–929 (1988)

    Article  Google Scholar 

  • Coulter III., J.B., Engelke, J.A., Eaton, D.K.: Insulin concentrations in aqueous humor after paracentesis and feeding of rabbits. Invest. Ophthalmol. Vis. Sc. 19, 1524–1526 (1980)

    Google Scholar 

  • Dai, P., Nakagami, T., Tanaka, H., Hitomi, T., Takamatsu, T.: Cx43 mediates TGF-beta signaling through competitive Smads binding to microtubules. Mol. Biol. Cell. 18, 2264–2273 (2007)

    Article  Google Scholar 

  • Davies, Y., Lewis, D., Fullwood, N.J., et al.: Proteoglycans on normal and migrating human corneal endothelium. Exp. Eye Res. 68, 303–311 (1999)

    Article  Google Scholar 

  • Dellas, C., Loskutoff, D.J.: Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb. Haemost 93, 631–640 (2005)

    Google Scholar 

  • Dipasquale, A.: Locomotive activity of epithelial cells in culture. Exp. Cell. Res. 94, 191–215 (1975)

    Article  Google Scholar 

  • Doughman, D.J., Van Horn, D.L., Rodman, W.P., et al.: Human cornel endothelial layer repair during organ culture. Arch. Ophthalmol. 94, 1791–1796 (1976)

    Google Scholar 

  • Engvall, E.: Structure and function of basement membranes. Int. J. Dev. Biol. 39, 781–787 (1995)

    Google Scholar 

  • Fehrenbacher, L., Gospodarowicz, D., Shuman, M.A.: Synthesis of plasminogen activator by bovine corneal endothelial cells. Exp. Eye Res. 29, 219–228 (1979)

    Article  Google Scholar 

  • Folkman, J., Klagsbrun, M., Sasse, J., Wadzinski, M., et al.: A heparin-binding angiogenic protein–basic fibroblast growth factor is stored within basement membrane. Am. J. Pathol. 130, 393–400 (1988)

    Google Scholar 

  • Fujino, Y., Tanishima, T.: Actin in wound-healing of rabbit corneal endothelium. II. Study by nitrobenzoxadiazole-phallacidin method. Jpn. J. Ophthamol. 31, 393–404 (1987)

    Google Scholar 

  • Fukata, M., Nakagawa, M., Kaibuchi, K.: Roles of Rho-family GTPases in cell polarization and directional migration. Curr. Opinion Cell. Biol. 15, 590–597 (2003)

    Article  Google Scholar 

  • Fullwood, N.J., Davies, Y., Nieduszynski, I.A., et al.: Cell surface-associated keratan sulfate on normal and migrating corneal endothelium. Invest. Ophthalmol. Vis. Sci. 37, 1256–1270 (1996)

    Google Scholar 

  • Gao, F., Toriyama, K., Ma, H., Nagata, T.: Light microscopic autoradiographic study on DNA synthesis in aging mice corneas. Cell. Mol. Biol. 39, 435–441 (1993)

    Google Scholar 

  • Glenn, H., Jacobson, B.S.: Cyclooxygenase and cAMP-dependent protein kinase reorganize the actin cytoskeleton for motility in HeLa cells. Cell. Motil. Cytoskeleton. 55, 265–277 (2003)

    Article  Google Scholar 

  • González-Périz, A., Clària, J.: New approaches to the modulation of the cyclooxygenase-2 and 5-lipoxygenase pathways. Curr. Top Med. Chem. 7, 297–309 (2007)

    Article  Google Scholar 

  • Gordon, S.R.: Changes in distribution of extracellular matrix proteins during wound repair in corneal endothelium. J. Histochem. Cytochem. 36, 409–416 (1988)

    Google Scholar 

  • Gordon, S.R.: Changes in extracellular matrix proteins and actin during corneal endothelial growth. Invest. Ophthalmol. Vis. Sci. 31, 94–101 (1990)

    Google Scholar 

  • Gordon, S.R.: Cytological and immunocytochemical approaches to the study of corneal endothelial wound repair. Prog. Histochem. Cytochem. 28, 1–66 (1994)

    Google Scholar 

  • Gordon, S.R.: Microfilament disruption in a noncycling organized tissue, the corneal endothelium, initiates mitosis. Exp. Cell. Res. 272, 127–134 (2002)

    Article  Google Scholar 

  • Gordon, S.R., Climie, M., Hitt, A.L.: 5-Fluorouracil interferes with actin organizationstress fiber formation and cell migration in corneal endothelial cells during wound repair along the natural basement membrane. Cell. Motil. Cytoskeleton. 62, 244–258 (2005)

    Article  Google Scholar 

  • Gordon, S.R., Czerwinski-Mowers, D., Marchand, J., Shuffett, R.: Endocytosis by the corneal endothelium. I. Regulation of binding and transport of hemeproteins and peroxidase-conjugated lectins across the tissue. Histochem. Cell. Biol. 110, 251–262 (1998)

    Article  Google Scholar 

  • Gordon, S.R., DeMoss, J.: Exposure to lysosomotropic amines and protease inhibitors retard corneal endothelial cell migration along the natural basement membrane during wound repair. Exp. Cell. Res. 246, 233–242 (1999)

    Article  Google Scholar 

  • Gordon, S.R., Essner, E., Rothstein, H.: In situ demonstration of actin in normal and injured ocular tissues using 7-nitrobenz-2-oxa-1,3-diazole phallacidin. Cell. Motil. 2, 343–354 (1982)

    Article  Google Scholar 

  • Gordon, S.R., Rothstein, H.: Studies on corneal endothelial growth and repair. I. Micofluorometric and autoradiographic analyses of DNA synthesis, mitosis and amitosis following freeze injury. Metabol. Ophthalmol. 2, 57–63 (1978)

    Google Scholar 

  • Gordon, S.R., Rothstein, H.: Studies on corneal endothelial growth and repair. III. Effects of DNA and RNA synthesis inhibitors upon restoration of transparency following wounding. Ophthal. Res. 14, 195–209 (1982)

    Google Scholar 

  • Gordon, S.R., Wood, M.: Soybean (Glycine max) agglutinin binds to corneal endothelial cells during wound repair and alters their microfilament pattern. Cell. Molec. Biol. 43, 329–336 (1997)

    Google Scholar 

  • Gordon, S.R., Wood, M.: Soybean agglutinin binding to corneal endothelial cell surfaces disrupts in situ monolayer integrity and actin organization and interferes with wound repair. Cell. Tiss. Res. 335, 551–563 (2009)

    Article  Google Scholar 

  • Gospodarowicz, D., Gonzalez, R., Fujii, D.K.: Are factors originating from serum, plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells? J. Cell. Physiol. 114, 191–202 (1983)

    Article  Google Scholar 

  • Gospodarowicz, D., Greenburg, G.: The effects of epidermal and fibroblast growth factors on the repair of corneal endothelial wounds in bovine corneas maintained in organ culture. Exp. Eye Res. 28, 147–157 (1979)

    Article  Google Scholar 

  • Gospodarowicz, D., Greenberg, G., Foidart, J.M., Savion, N.: The production and localization of laminin in cultured vscular and corneal endothelial cells. J. Cell. Physiol. 107, 171–183 (1981)

    Article  Google Scholar 

  • Gospodarowicz, D., Greenburg, G., Vlodavsky, I., et al.: The identification and localization of fibronectin in cultured corneal endothelial cells: cell surface polarity and physiological implications. Exp. Eye Res. 29, 485–509 (1979)

    Article  Google Scholar 

  • Gospodarowicz, D.: The extracellular matrix and the control of proliferation of corneal endothelial and lens epithelial cells. Exp. Eye Res. 31, 181–199 (1980)

    Article  Google Scholar 

  • Gotlieb, A.I., Langille, L., Wong, M.K., Kim, D.W.: Structure and function of the endothelial cytoskeleton. Lab Invest. 65, 123–137 (1991)

    Google Scholar 

  • Gotlieb, A.I., May, L.M., Subrahmanyan, L., Kalnins, V.I.: Distribution of microtubule organizing centers in migrating sheets of endothelial cells. J. Cell. Biol. 91, 589–594 (1981)

    Article  Google Scholar 

  • Grant, M.B., Khow, P.T., Schultz, G.S., et al.: Effects of epidermal growth factor, fibroblast growth factor and transforming growth factor-β on corneal cell chemotaxis. Invest. Ophthalmol. Vis. Sci. 33, 3292–3301 (1992)

    Google Scholar 

  • Grant, D.S., Leblond, C.P.: Immunoglod quantitation of laminin, type IV collagen, and heparin sulfate proteoglycan in a variety of basement membranes. J. Histochem. Cytochem. 36, 271–283 (1988)

    Google Scholar 

  • Grasso, S., Hernández, J.A., Chifflet, S.: Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. Am. J. Physiol. 293, C1327–C1337 (2007)

    Article  Google Scholar 

  • Green, J.A., Stockton, R.A., Johnson, C., Jacobson, B.S.: 5-Lipoxygenase and cyclooxygenase regulate wound closure in NIH?3T3 fibroblast monolayers. Am. J. Cell. Physiol. 287, C373–C383 (2004)

    Article  Google Scholar 

  • Grinnell, F., Rocha, L.B., Iucu, C., Rhee, S., Jiang, H.: Nested collagen matrices: a new model to study migration of human fibroblast populations in three dimensions. Exp. Cell. Res. 312, 86–94 (2006)

    Google Scholar 

  • Gu, X., Seong, G.J., Lee, Y.G., Kay, E.P.: Fibroblast growth factor 2 uses distinct signaling pathways for cell proliferation and cell shape changes in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 37, 2326–2334 (1996)

    Google Scholar 

  • Hall, A.: Rho GTPases and the actin cytoskeleton. Science 279, 509–514 (1998)

    Article  Google Scholar 

  • Hay, E.D., Revel, J.P.: Fine structure of the developing cornea. In: Wolsky, A., Chen, P.S. (eds.) Monographs in developmental biology, Karger, Basal, vol. 1 (1969)

    Google Scholar 

  • Hergott, G.J., Sandig, M., Kalnins, V.I.: Cytoskeletal organization of migrating retinal pigment epithelial cells during wound healing in organ culture. Cell. Motil. Cytoskel. 13, 83–93 (1989)

    Article  Google Scholar 

  • Herman, I.M., Crisona, N.J., Pollard, T.D.: Relationship between cell activity and the distribution of cytoplasmic actin and myosin. J. Cell. Biol. 97, 416–424 (1981)

    Google Scholar 

  • Hirschi, K.K., Burt, J.M., Hirschi, K.D., Dai, C.: Gap junction communication mediates transforming growth factor-beta activation and endothelial-induced mural cell differentiation. Circ. Res. 93, 429–437 (2003)

    Article  Google Scholar 

  • Hiscott, P., Paraoan, L., Choudhary, A., Ordonez, J.L., Al-Khaier, A., Arm-strong, D.J.: Thrombospondin 1, thrombospondin 2 and the eye. Prog. Retin. Eye Res. 25, 1–18 (2006)

    Article  Google Scholar 

  • Hiscott, P., Seitz, B., Schlötzer-Schrehardt, U., Naumann, G.O.H.: Immunolocalization of thrombospondin 1 in human, bovine and rabbit cornea. Cell. Tissue Res. 289, 307–310 (1997)

    Article  Google Scholar 

  • Hoppenreijs, V.P., Pels, E., Vrensen, G.F., Oosting, J., Treffers, W.F.: Effects of human epidermal growth factor on endothelial wound healing of human corneas. Invest. Ophthalmol. Vis. Sci. 33, 1946–1957 (1992)

    Google Scholar 

  • Hoppenreijs, V.P., Pels, E., Vrensen, G.F., Treffers, W.F.: Effects of platelet-derived growth factor on endothelial wound healing of human corneas. Invest. Ophthalmol. Vis. Sci. 35, 150–161 (1994)

    Google Scholar 

  • Hsieh, P., Baum, J.: Effects of fibroblastic and endothelial extracellular matrices on corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 26, 457–463 (1985)

    Google Scholar 

  • Huang, C., Jacobson, K., Schaller, M.D.: MAP kinases and cell migration. J. Cell. Sci. 117, 4619–4628 (2004)

    Article  Google Scholar 

  • Ichijima, H., Petroll, W.M., Barry, P.A., Andrews, P.M., et al.: Actin filament organization during endothelial wound healing in the rabbit cornea: comparison between transcorneal freeze and mechanical scrape injuries. Invest. Ophthalmol. Vis. Sci. 34, 2803–2812 (1993)

    Google Scholar 

  • Jalimarada, S.S., Shivanna, M., Kini, V., et al.: Microtubule disassembly breaks down the barrier integrity of corneal endothelium. Exp. Eye Res. (2009), doi:10.1016/j.exer.2009.03.019

    Google Scholar 

  • Johnson, D.H., Bourne, W.H., Campbell, R.J.: The ultrastructure of Descemet’s membrane. I. Changes with afe in normal corneas. Arch. Ophthalmol. 100, 1942–1947 (1982)

    Google Scholar 

  • Johnston, M.C., Noden, D.M., Hazelton, R.D., Coulombre, J.L., Coulombre, A.J.: Origins of avian ocular and periocular tissues. Exp. Eye Res. 29, 27–43 (1979)

    Article  Google Scholar 

  • Joyce, N.C.: Proliferative capacity of the corneal endothelium. Prog. Retin. Eye Res. 22, 359–389 (2003)

    Article  Google Scholar 

  • Joyce, N.C., Harris, D., Mello, D.M.: Mechanisms of mitotic inhibition in corneal endothelium: contact inhibition and TGF-β2. Invest. Ophthalmol. Vis. Sci. 43, 2152–2159 (2002)

    Google Scholar 

  • Joyce, N.C., Harris, D.L., Zieske, J.D.: Mitotic inhibition of corneal endothelium in neonatal rats. Invest. Ophthalmol. Vis. Sci. 39, 2572–2583 (1998)

    Google Scholar 

  • Joyce, N.C., Joyce, S.J., Powell, S.M., Meklir, B.: EGF and PGF2: ef-fects on corneal endothelial cell migration and monolayer spreading during wound repair in vitro. Curr. Eye Res. 13, 601–609 (1995)

    Article  Google Scholar 

  • Joyce, N.C., Maklir, B., Joyce, S.J., Zieske, J.P.: Cell cycle protein expression and proliferative status in human corneal cells. Invest. Ophthalmol. Vis. Sci. 37, 645–655 (1996)

    Google Scholar 

  • Joyce, N.C., Matkin, E.D., Neufeld, A.H.: Corneal endothelial wound closure in vitro. Invest. Ophthalmol. Vis. Sci. 30, 1548–1559 (1989)

    Google Scholar 

  • Joyce, N.C., Meklir, B., Neufeld, A.H.: In vitro pharmacological separation of corneal endothelial migration and spreading responses. Invest. Ophthalmol. Vis. Sci. 31, 1816–1826 (1990)

    Google Scholar 

  • Joyce, N.C., Meklir, B.: Protein kinase C activation during corneal endothelial wound repair. Invest. Ophthalmol. Vis. Sci. 33, 1958–1973 (1992)

    Google Scholar 

  • Joyce, N.C., Meklir, B.: PGE2: a mediator of corneal endothelial wound repair in vitro. Am. J. Physiol. 266, C269–C275 (1994)

    Google Scholar 

  • Jumblatt, M.M.: Autocrine regulation of corneal endothelium by prostaglandin E2. Invest. Ophthamol. Vis. Sci. 35, 2783–2790 (1994)

    Google Scholar 

  • Jumblatt, M.M., Willer, S.S.: Corneal endothelial repair. Regulation of prostaglandin E2 synthesis. Invest. Ophthalmol. Vis. Sci. 37, 1294–1301 (1996)

    Google Scholar 

  • Jun, A.S., Chakravarti, S., Edelhauser, H.F., Kimos, M.: Aging changes of mouse corneal endothelium and Descemet’s membrane. Exp. Eye Res. 83, 890–896 (2006)

    Article  Google Scholar 

  • Katoh, K., Kano, Y., Amano, M., et al.: Rho-kinase–mediated contraction of isolated stress fibers. J. Cell. Biol. 153, 569–584 (2001)

    Article  Google Scholar 

  • Kaye, G.I., Pappas, G.D.: Studies on the cornea. I. The fine structure of the rabbit cornea and the uptake and transport of colloidal particles by the cornea in vitro. J. Cell. Biol. 12, 457–479 (1962)

    Article  Google Scholar 

  • Kaye, G.I., Sibley, R.C., Hoefle, F.B.: Recent studies on the nature and function of the corneal endothelial barrier. Exp. Eye Res. 15, 585–613 (1973)

    Article  Google Scholar 

  • Kaye, G.I., Tice, L.W.: Studies on the cornea. V. Electron microscopic localization of adenosine triphosphatase activity in the rabbit cornea in relation to transport. Invest. Ophthalmol. 5, 22–32 (1966)

    Google Scholar 

  • Khodadoust, A.A., Green, K.: Physiological function of regenerating endothelium. Invest. Ophthalmol. 15, 96–101 (1976)

    Google Scholar 

  • Kirkpatrick, C.J., Kampe, M., Rixen, H., et al.: In vitro studies on the expansion of endothelial cell monolayers on components of the basement membrane. Virchows Arch. B. Cell. Pathol. 58, 207–213 (1990)

    Google Scholar 

  • Kjøller, L.: The urokinase plasminogen activator receptor in the regulation of the actin cytoskeleton and cell motility. Biol. Chem. 383, 5–19 (2002)

    Article  Google Scholar 

  • Klymkowsky, M.W., Savagner, P.: Epithelial-mesenchymal transition. A cancer researcher’s conceptual friend and foe. Am. J. Pathol. 174, 1588–1593 (2009)

    Article  Google Scholar 

  • Kupfer, A., Louvard, D., Singer, S.J.: Polarization of the Golgi apparatus and microtubule-organizing center in cultured fibroblasts at the edge of an experimental wound. Proc. Natl. Acad. Sci. USA 79, 2603–2607 (1982)

    Article  Google Scholar 

  • Kuriyama, S., Mayor, R.: Molecular analysis of neural crest migration. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 1349–1362 (2008)

    Article  Google Scholar 

  • Labermeier, U., Kenney, M.C.: The presence of EC collagen and type IV collagen in bovine Descemet’s membranes. Biochem. Biophys. Res. Commun. 116, 619–625 (1983)

    Article  Google Scholar 

  • Laing, R.A., Sandstrom, M.M., Berrospi, A.R., Liebowitz, H.M.: Changes in the corneal endothelium as a function of age. Exp. Eye Res. 22, 587–594 (1976)

    Article  Google Scholar 

  • Landshman, N., Solomon, A., Belkin, M.: Cell division in the healing of the corneal endothelium of cats. Arch. Ophthalmol. 107, 1804–1808 (1989)

    Google Scholar 

  • Lee, T.Y., Gotlieb, A.I.: Microfilaments and microtubules maintain endothelial integrity. Microsc. Res. Tech. 60, 115–127 (2003)

    Article  Google Scholar 

  • Lee, H.T., Kay, E.P.: FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells. Molec. Vis. 9, 624–634 (2003)

    Google Scholar 

  • Lee, H.T., Lee, J.G., Na, M., Kay, E.P.: FGF-2 induced interleukin-1β through action of phosphatidylinositol 3-kinase mediates endothelial mesenchymal transformation in corneal endothelial cells. J. Biol. Chem. 279, 32325–32332 (2004)

    Article  Google Scholar 

  • Lee, J.G., Kay, E.P.: FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidlyinositol 3-kinase pathway. Invest. Ophthalmol. Vis. Sci. 47, 1376–1386 (2006a)

    Article  Google Scholar 

  • Lee, J.G., Kay, E.P.: Cross-talk among Rho GTPases acting downstream of PI 3-kinases induces mesenchymal transformation of corneal endothelial cells mediated by FGF-2. Invest. Ophthalmol. Vis. Sci. 47, 2358–2368 (2006b)

    Article  Google Scholar 

  • Lee, J.G., Kay, E.P.: FGF-2 mediated signal transduction during endothelial mesenchymal transformation in corneal endothelial cells. Exp. Eye Res. 83, 1309–1316 (2006c)

    Article  Google Scholar 

  • Lee, J.G., Kay, E.P.: Common and distinct pathways for cellular activities in FGF-2 signaling induced by IL-1β in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 50, 2067–2076 (2009)

    Article  Google Scholar 

  • Lee, T.Y., Noria, S., Lee, J., Gotlieb, A.I.: Endothelial integrity and repair. Adv. Exp. Med. Biol. 498, 65–74 (2001)

    Google Scholar 

  • Leuenberger, P.M., Novikoff, A.B.: Localization of transport adenosine triphosphate in rat cornea. J. Cell. Biol. 60, 721–731 (1974)

    Article  Google Scholar 

  • Lewis, L., Verna, J.-M., Levinstone, D., Sher, S., et al.: The relationship of fibroblast translocations to cell morphology and stress fiber density. J. Cell. Sci. 53, 21–36 (1982)

    Google Scholar 

  • Lin, C.Q., Bissel, M.J.: Multi-faceted regulation of cell differentiation by extracellular matrix. FASEB J. 7, 737–743 (1993)

    Google Scholar 

  • MacCallum, D.K., Bahn, C.F., Lillie, J.H., Meyer, R.F., Martonyi, C.L.: Evidence for corneal endothelial cell hypertrophy during postnatal growth of the cat cornea. Invest. Ophthalmol. Vis. Sci. 24, 247–250 (1983)

    Google Scholar 

  • MacCallum, D.K., Lillie, J.H., Scaletta, L.J., et al.: Bovine corneal endothelium in vitro. Elaboration and organization of a basement membrane. Exp. Cell. Res. 139, 1–13 (1982)

    Article  Google Scholar 

  • Maekawa, H., Oike, Y., Kanda, S., Ito, Y., et al.: Ephrin-B2 induces migration of endothelial cells through the phosphatidylinositol-3 kinase pathway and promotes angiogenesis in adult vasculature. Arterioscler Thromb. Vasc. Biol. 23, 2008–2014 (2003)

    Article  Google Scholar 

  • Martin-Belmonte, F., Mostov, K.: Regulation of cell polarity during epithelial morphogenesis. Curr. Opinion Cell. Biol. 20, 227–234 (2008)

    Article  Google Scholar 

  • Martz, E., Steinberg, M.S.: The role of cell-cell contact in "contact" inhibition of cell division: a review and new evidence. J. Cell. Physiol. 79, 189–210 (1972)

    Article  Google Scholar 

  • Maurice, D.M.: The localization of the fluid pump in the cornea. J. Physiol. (London) 221, 43–54 (1972)

    Google Scholar 

  • Mergler, S., Pleyer, U.: The human corneal endothelium: new insights into electrophysiology and ion channels. Prog. Retin. Eye Res. 26, 359–378 (2007)

    Article  Google Scholar 

  • Mills, J.W., Mandel, L.J.: Cytoskeletal regulation of membrane transport events. FASEB J. 8, 1161–1165 (1994)

    Google Scholar 

  • Miyata, K., Murao, M., Sawa, M., Tanishima, T.: Kinetic study of cell proliferation in a new wound healing model using tissue cultured corneal endothelial cells. Nippon Ganka Gakkai Zasshi 93, 287–293 (1989)

    Google Scholar 

  • Mohay, J., McLaughlin, B.J.: Corneal endothelial wound repair in normal and mitotically inhibited cultures. Graefes Arch. Clin. Exp. Ophthalmol. 233, 727–736 (1995)

    Article  Google Scholar 

  • Møller-Pedersen, T.: A comparative study of human corneal keratocyte and endothelial cell density during aging. Cornea 6, 333–338 (1997)

    Google Scholar 

  • Morton, K., Hutchinson, C., Jeanny, J.C., et al.: Colocalization of fibroblast growth factor binding sites with extracellular matrix components in normal and keratoconus corneas. Curr. Eye Res. 8, 975–987 (1989)

    Article  Google Scholar 

  • Munjal, I.D., Crawford, D.R., Blake, D.A., Sabet, M.D., Gordon, S.R.: Thrombospondin: biosynthesis, distribution, and changes associated with wound repair in corneal endothelium. Eur. J. Cell. Biol. 52, 252–263 (1990)

    Google Scholar 

  • Murphy, C., Alvarado, J., Juster, R.: Prenatal and postnatal growth of the human Descemet’s membrane. Invest. Ophthalmol. Vis. Sci. 25, 1402–1415 (1984)

    Google Scholar 

  • Nakano, Y., Oyamada, M., Dai, P., Nakagami, T., et al.: Con-nexin43 knockdown acclerates wound healing but inhibits mesenchymal transition after corneal endothelial injury in vivo. Invest. Ophthalmol. Vis. Sci. 49, 93–104 (2008)

    Article  Google Scholar 

  • Nelson, G.A., Revel, J.-P.: Scanning electron microscopic study of cell movements in the corneal endothelium of the avian embryo. Dev. Biol. 42, 315–333 (1975)

    Article  Google Scholar 

  • Neufeld, A.H., Jumblatt, M.M., Matkin, E.D., Raymond, G.M.: Maintenance of corneal endothelial cell shape by prostaglandin E2: Effects of EGF and indomethacin. Invest. Ophthalmol. Vis. Sci. 27, L1437–L1442 (1986)

    Google Scholar 

  • Newgreen, D.F., Erickson, C.A.: The migration of neural crest cells. Int. Rev. Cytol. 103, 89–145 (1986)

    Article  Google Scholar 

  • Nickeleit, V., Kaufman, A.H., Zagachin, L., Dutt, J.F., et al.: Healing corneas express embryonic fibronectin isoforms in the epithelim, subepithelial stroma, and endothelium. Am. J. Pathol. 149, 549–558 (1996)

    Google Scholar 

  • Nisha, K., Sotozono, C., Adachi, W., Yamamoto, S., et al.: Transforming growth factor-β1, -β2 and β3 mRNA expression in human cornea. Curr. Eye Res. 14, 235–241 (1994)

    Article  Google Scholar 

  • Nuttall, R.P.: DNA synthesis during the development of the chick cornea. J. Exp. Zool 198, 193–208 (1976)

    Article  Google Scholar 

  • Parkinson, W.C.: Motility of mouse fibroblasts in tissue culture. Biophys. J. 42, 17–23 (1983)

    Article  Google Scholar 

  • Paulsson, M.: Basement membrane proteins: Structure, assembly and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 27, 93–127 (1992)

    Article  Google Scholar 

  • Pellegrin, S., Mellor, H.: Actin stress fibres. J. Cell. Sci. 120, 3491–3499 (2007)

    Article  Google Scholar 

  • Perlman, M., Baum, J.: Synthesis of a collagenous basal membrane by rabbit corneal endothelial cells in vitro. Arch. Ophthalmol. 92, 238–239 (1974)

    Google Scholar 

  • Perlman, M., Baum, J., Kaye, G.I.: Fine structure and collagen synthesis activity of monolayer cultures of rabbit corneal endothelium. J. Cell. Biol. 63, 306–311 (1974)

    Article  Google Scholar 

  • Petroll, W.M., Hsu, J.K.W., Bean, J., Cavanagh, H.D., Jester, J.V.: The spatial organization of apical junctional complex-associated proteins in feline and human corneal endothelium. Curr. Eye Res. 18, 10–19 (1999)

    Article  Google Scholar 

  • Petroll, W.M., Jester, J.V., Barry-Lane, P.A., Cavanagh, H.D.: Effects of basic FGF and TGF beta 1 on F-actin and ZO-1 organization during cat endothelial wound healing. Cornea 15, 525–532 (1996)

    Google Scholar 

  • Petroll, W.M., Jester, J.V., Barry-Lane, P., Cavanagh, H.D.: As-sessment of F-actin organization and apicalbasal polarity during in vivo cat endothelial wound healing. Invest. Ophthalmol. Vis. Sci. 36, 2492–2502 (1995)

    Google Scholar 

  • Petroll, W.M., Jester, J.V., Bean, J.J., Cavanagh, H.D.: Myofibroblast transformation of cat corneal endothelium by transforming growth factor-β1,-β2, and –β3. Invest. Ophthalmol. Vis. Sci. 39, 2018–2032 (1998)

    Google Scholar 

  • Petroll, W.M., Ma, L., Jester, J.V., Cavanagh, H.D., Bean, J.: Organization of junctional proteins in proliferating cat corneal endothelium during wound healing. Cornea 20, 73–80 (2001)

    Article  Google Scholar 

  • Rahi, A.H., Robins, E.: Human corneal endothelial cell repair in health and disease. Trans. Ophthalmol. Soc. U.K. 101, 30–34 (1981)

    Google Scholar 

  • Rahimi, R.A., Leof, E.B.: TGF-β signaling: a tale of two responses. J. Cell. Biochem. 102, 593–608 (2007)

    Article  Google Scholar 

  • Raja, S.K., Garcia, M.S., Isseroff, R.R.: Wound re-epithelialization: modulating keratinocyte migration in wound healing. Front Biosci. 12, 2849–2868 (2007)

    Article  Google Scholar 

  • Ramsby, M.L., Kreutzer, D.L.: Fibrin induction of tissue plasminogen activator expression in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34, 3207–3219 (1993a)

    Google Scholar 

  • Ramsby, M.L., Kreutzer, D.L.: Fibrin induction of thrombospondin in corneal endothelial cells in vitro. Invest. Ophthalmol. Vis. Sci. 34, 165–174 (1993b)

    Google Scholar 

  • Raphael, B., McLaughlin, B.J.: Adsorptive and fluid phase endocytosis by cultured rabbit corneal endothelium. Curr. Eye Res. 9, 249–258 (1990)

    Article  Google Scholar 

  • Reneker, L., Silversides, D.W., Xu, L., Overbeek, P.A.: Formation of corneal endothelium is essential for anterior segment development – a transgenic mouse model of anterior segment dysgenseis. Develop. 127, 533–542 (2000)

    Google Scholar 

  • Reuner, K.H., Dunker, P., van der Does, A., Wiederbold, M., et al.: Regulation of actin synthesis in rat hepatocytes by cytoskeletal rear-rangements. Eur. J. Cell. Biol. 69, 189–196 (1996)

    Google Scholar 

  • Rich, L.F., Hatfield, J.M., Louiselle, I.: Influences of basic fibro-blast growth factor on cat corneal endothelial wound repair in vivo. Curr. Eye Res. 11, 719–725 (1992)

    Article  Google Scholar 

  • Ridley, A.J.: Rho GTPases and cell migration. J. Cell. Sci. 114, 2713–2722 (2001)

    Google Scholar 

  • Rieck, P.W., Cholidis, S., Hartmann, C.: Intracellular signaling pathway of FGF-2-modulated corneal endothelial cell migration during wound healing in vitro. Exp. Eye Res. 73, 639–650 (2001)

    Article  Google Scholar 

  • Rieck, P., Oliver, L., Engelmann, K., Fuhrmann, G., Hartmann, C., Courtois, Y.: The role of exogenous/endogenous basic fibroblast growth factor (FGF2) and transforming growth factor beta (TGF beta-1) on human corneal endothelial cells proliferation in vitro. Exp. Cell. Res. 220, 36–46 (1995)

    Article  Google Scholar 

  • Robinson, J., Gospodarowicz, D.: Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells. J. cell. Physiol. 117, 368–376 (1983)

    Article  Google Scholar 

  • Rodgers, K.A., Dandig, M., McKee, N.H., Kalnins, V.I.: The distribution of microfilament bundles in rabbit endothelial cells in the intact aorta during wound healing in situ. Biochem. Cell. Biol. 67, 553–562 (1989)

    Article  Google Scholar 

  • Rodriguez-Diaz, A., Toyama, Y., Abravanel, D.L., Wiemann, J.M., et al.: Actomyosin purse strings: renewable resources that make morphogenesis robust and resilient. HFSP J. 2, 220–237 (2008)

    Article  Google Scholar 

  • Ross, L.L., Danehower, S.C., Prioa, A.D., Sontag, M., et al.: Coordinated activation of corneal wound response genes in vivo as observed by in situ hybridization. Exp. Eye Res. 61, 435–450 (1995)

    Article  Google Scholar 

  • Rothstein, H., Gordon, S.R.: Studies on corneal endothelial growth and repair. II. Increased transcription as detected by incorporation of 3H-uridine and 3H-actinomycin D. Tiss. Cell 12, 547–659 (1980)

    Article  Google Scholar 

  • Sabatier, P., Rieck, P., Daumer, M.L., et al.: Effet du basic Fibro-blast Growth Factor (bFGF) recombinant humain sur la cicatrisation endothéliale en organoculture de la cornée humaine. J. Fr. Ophthalmol. 19, 200–207 (1996)

    Google Scholar 

  • Sabet, M.D., Gordon, S.R.: Ultrastructural immunocytochemical localization of fibronectin deposition during corneal endothelial wound repair. Evidence for cytoskeleton involvement. Bio. Cell 65, 171–179 (1989)

    Article  Google Scholar 

  • Sakamoto, T., Hinton, D.R., Sakamoto, H., Gopalakrishna, R., et al.: Thrombin induced cytoskeletal change in cultured bovine corneal endothelial cells mediated via protein kinase C pathway. Curr. Eye Res. 14, 35–45 (1994)

    Article  Google Scholar 

  • Sankey, E.A., Bown, F.E., Morton, L.F., et al.: Analysis of the collagen types synthesized by bovine corneal endothelial cells in culture. Biochem. J. 198, 707–710 (1981)

    Google Scholar 

  • Satpathy, M., Gallagher, P., Jin, Y., Srinivas, S.P.: Extracellular ATP opposes thrombin-induced myosin light chain phosphorylation and loss of barrier function. Exp. Eye Res. 81, 183–192 (2005)

    Article  Google Scholar 

  • Savenger, P.: Leaving the neighborhood: molecular mechanisms involved during epithelialmesenchyme transition. BioEssays 23, 912–923 (2001)

    Article  Google Scholar 

  • Sawada, H., Furthmayr, H., Konomi, H., Nagai, Y.: Immunoelec-tronmicroscopic localization of extracellular matrix components produced by bovine corneal ensothelial cells in vitro. Exp. Cell. Res. 171, 94–109 (1987)

    Article  Google Scholar 

  • Sawada, H., Konomi, H., Nagal, Y.: The basement membrane of bovine corneal endothelial cells in culture with β-aminopropionitrile: biosynthesis of hexagonal lattices composed of a 160 nm dumbbell-shaped structure. Eur. J. Cell. Biol. 35, 226–234 (1984)

    Google Scholar 

  • Sawada, H., Tanaka, H., Ono, M.: Ultrastructure of tracheal epithelial cells migrating in an in vivo environment. Arch. Histol. Cytol. 71, 223–234 (2008)

    Article  Google Scholar 

  • Scheef, E.A., Huang, Q., Wang, S., Sorenson, C.M., Sheibani, N.: Isolation and characterization of corneal endothelial cells from wild type and thrombospondin-1 deficient mice. Mol. Vis. 13, 1483–1495 (2007)

    Google Scholar 

  • Schilling-Schön, A., Pleyer, U., Hartmann, C., Rieck, P.W.: The role of endogenous growth factors to support corneal endothelial migration after wounding in vitro. Exp. Eye Res. 71, 583–589 (2000)

    Article  Google Scholar 

  • Schmidt, A., Hall, A.: Guanine nucleotide exchange factors for Rho GTPases: turning on the switch. Genes Dev. 16, 1587–1609 (2002)

    Article  Google Scholar 

  • Schubert, H.D., Trokel, S.: Endothelial repair following Nd:YAG laser injury. Invest. Ophthalmol. Vis. Sci. 25, 971–976 (1984)

    Google Scholar 

  • Schultz, G., Khaw, P.T., Oxford, K., MaCauley, S., et al.: Growth factors and ocular wound healing. Eye 8, 184–187 (1994)

    Google Scholar 

  • Schultz, G.S., Wysocki, A.: Interactions between extracellular matrix and growth factors in wound healing. Wound Rep. Reg. 17, 153–162 (2009)

    Article  Google Scholar 

  • Scoot, D.M., Murray, J.C., Barnes, M.J.: Investigations on the attachment of bovine corneal endothelial cells to collagens and other components of the subendothelium. Role of fibronectin. Exp. Cell. Res. 144, 472–478 (1983)

    Article  Google Scholar 

  • Senoo, T., Obara, Y., Joyce, N.C.: EDTA: a promoter of proliferation in human corneal endothelium. Invest. Ophthalmol. Vis. Sci. 41, 2930–2935 (2000)

    Google Scholar 

  • Sherrerd, E.S., Ng, Y.L.: The other side of the corneal endothelium. Cornea 9, 48–54 (1990)

    Article  Google Scholar 

  • Soltau, J.B., Zhou, L.X., McLaughlin, B.J.: Isolation of plasma membrane domains from bovine corneal endothelial cells. Exp. Eye Res. 56, 115–120 (1993)

    Article  Google Scholar 

  • Sosnowski, R.G., Feldman, S., Feramisco, J.R.: Interference with endogenous Ras function inhibits cellular responses to wounding. J. Cell. Biol. 121, 113–119 (1993)

    Article  Google Scholar 

  • Srinivas, A.P., Satpathy, M., Gallagher, P., Larivière, E., Van Driessche, W.: Adenosine induces dephosphorylation of myosin II regulatory light chain in cultured bovine corneal endothelial cells. Exp. Eye Res. 79, 543–551 (2004)

    Article  Google Scholar 

  • Sumioka, T., Ikeda, K., Okada, Y., et al.: Inhibitory effect of blocking TGF-β/Smad signal on injury-induced fibrosis of corneal endothelium. Mol. Vis. 14, 2272–2281 (2008)

    Google Scholar 

  • Takatsuka, A., Yagi, R., Koile, M., Oneyama, C., et al.: Ablation of Csk in neural crest lineages causes corneal anomaly by deregulating collagen fibril organization and cell motility. Dev. Biol. 315, 474–488 (2008)

    Article  Google Scholar 

  • Tétreault, M.P., Chailler, P., Beaulieu, J.F., Rivard, N., Ménard, D.: Specific signaling cascades involved in cell spreading during healing of micro-wounded gastric epithelial monolayers. J. Cell. Biochem. 105, 1240–1249 (2008)

    Article  Google Scholar 

  • Timpl, R., Brown, J.C.: Supramolecular assembly of basement membranes. BioEssays 18, 123–132 (1996)

    Article  Google Scholar 

  • Tucker, R.P., Hagios, C., Chiquet-Ehrismann, R., Lawler, J.: In situ localization of thrombospondin-1 and thrombospondin-3 transcripts in the avian embryo. Dev. Dyn. 208, 326–337 (1997)

    Article  Google Scholar 

  • Tuft, S.J., Williams, K.A., Coster, D.J.: Endothelial repair in the rat cornea. Invest. Ophthalmol. Vis. Sci. 27, 1199–1204 (1986)

    Google Scholar 

  • Underwood, P.A., Bennett, F.A.: The effect of extracellular matrix molecules on the in vitro behavior of bovine endothelial cells. Exp. Cell. Res. 205, 311–319 (1993)

    Article  Google Scholar 

  • Usui, T., Takase, M., Kaji, Y., Suzuki, K., et al.: Extracellular matrix production regulation by TGF-β in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 39, 1981–1989 (1998)

    Google Scholar 

  • Van Horn, D.L., Hyndiuk, R.A.: Endothelial repair in primate corneas. Exp. Eye Res. 21, 113–124 (1975)

    Article  Google Scholar 

  • Van Horn, D.L., Sendele, D.D., Seidman, S., Buco, P.J.: Regenerative capacity of the corneal endothelium in rabbit and cat. Invest. Ophthalmol. Vis. Sci. 16, 597–613 (1977)

    Google Scholar 

  • Verin, A.D., Birukova, A., Wang, P., Liu, F., et al.: Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. Amer. J. Physiol. Lung. Cell. Mol. Physiol. 281, L565–L574 (2001)

    Google Scholar 

  • Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., et al.: Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. J. Cell. Biochem. 45, 167–176 (1991)

    Article  Google Scholar 

  • Vogel, T., Guo, N.H., Krutzsch, H.C., Blake, D.A., et al.: Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type 1 repeats of thrombospondin. J. Cell. Biochem. 53, 74–84 (1993)

    Article  Google Scholar 

  • von Sallman, L., Caravaggio, L.L., Grimes, P.: Studies on the corneal endothelium of the rabbit. I. Cell division and growth. Aner. J. Ophthalmol. 51, 955–966 (1961)

    Google Scholar 

  • von Sallman, L., Grimes, P., McElvain, M.: Studies on the corneal endothelium of the rabbit. II. The generative cycle of the cell. Arch. Ophthalmol. 69, 815–823 (1963)

    Google Scholar 

  • Wang, D.-A., Haiming, D., Jaggar, J.H., Brindley, D.B., et al.: Injury-elicited differential transcriptional regulation of phospholipids growth factor receptors in the cornea. Am. J. Physiol. Cell. Physiol. 283, C1646–C1654 (2002)

    Google Scholar 

  • Weiger, M.C., Wang, C.C., Krajcovic, M., et al.: Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts. J. Cell. Sci. 122(Pt 3), 313–323 (2009)

    Article  Google Scholar 

  • Weimar, V.L., Squires, E.L., Knox, R.J.: Acceleration of healing of rabbit corneal endothelium by mesodermal growth factor. Invest. Ophthalmol. Vis. Sci. 19, 350–361 (1980)

    Google Scholar 

  • Weinsieder, A., Briggs, R., Reddan, J., et al.: Induction of mitosis in ocular tissue by chemotoxic agents. Exp. Eye Res. 20, 33–44 (1975)

    Article  Google Scholar 

  • Weiss, P.: Symposium on wound healing and tissue repair. In: Patterson, W.B. (ed.) Wound healing and tissue repair. Univ. Chicago Press, Chicago (1956)

    Google Scholar 

  • Whikehart, D.R., Parikh, C.H., Vaughn, A.V., Mishler, K., Edelhauser, H.F.: Evidence suggesting the existence of stem cells for the human corneal endothelium. Mol. Vis. 11, 816–824 (2005)

    Google Scholar 

  • Wieland, T.: Modification of actins by phallotoxins. Naturwis-senschaften 64, 303–309 (1977)

    Article  Google Scholar 

  • Wong, M.K., Gotlieb, A.I.: Endothelial cell monolayer integrity. I. Characterization of dense peripheral band of microfilaments. Arteriosclerosis 6, 212–219 (1986)

    Google Scholar 

  • Wulle, K.G.: Electron microscopy of the fetal development of the corneal endothelium and Descemet’s membrane of the human eye. Invest. Ophthalmol. 11, 817–904 (1972)

    Google Scholar 

  • Yamaguchi, N., Sato, N., Ko, J.S., Ninomiya, Y.: Cloning of α1(IV) and α2(IV) collagen cDNAs from rabbit corneal endothelial cell RNA. Invest. Ophthalmol. Vis. Sci. 32, 2924–2930 (1991)

    Google Scholar 

  • Yokota, S., Waller, W.K.: Electron microscopic localization of carbonic anhydrase (CA) activity in rabbit cornea. Albrecht. Von. Graefes Arch. Klin. Exp. Ophthalmol. 197, 145–152 (1975)

    Article  Google Scholar 

  • Yoshida, A., Laing, R.A., Joyce, N.C., Neufeld, A.H.: Effects of EGF and indomethacin on rabbit corneal endothelial wound closure in excised corneas. Invest. Ophthalmol. Vis. Sci. 30, 1991–1996 (1989)

    Google Scholar 

  • Yue, B.Y.J.T., Baum, J.: The synthesis of glycosaminoglycans by cultures of rabbit and corneal endothelial and stromal cells. Biochem. J. 158, 567–573 (1976)

    Google Scholar 

  • Zelenka, P.S., Arpitha, P.: Coordinating cell proliferation and migration in the lens and cornea. Semin. Cell. Dev. Biol. 19, 113–124 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Gordon, S.R. (2009). Cell Migration along the Basement Membrane during Wound Repair. The Corneal Endothelium as a Model System. In: Gefen, A. (eds) Bioengineering Research of Chronic Wounds. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00534-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00534-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00533-6

  • Online ISBN: 978-3-642-00534-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics