Skip to main content

Part of the book series: Advances in Anatomy, Embryology and Cell Biology ((ADVSANAT,volume 205))

  • 445 Accesses

Abstract

The mammalian gonad develops within the urogenital ridge as a thickening along the ventromedial cranial area of the mesonephros. In mice, this occurs at day 10.0–10.5 post coitus (dpc) (Byskov 1986; Brennan and Capel 2004; Kim and Capel 2006; Wilhelm et al. 2007; Tang et al. 2008). This thickening results from both the proliferation of the coelomic epithelium and the allocation of cells from the mesonephros (Yao and Capel 2002; Ross and Capel 2005; Cool et al. 2008). At the beginning, the structure of this gonad anlage is identical in XX and XY mice embryos, and either ovary or testis can develop from this bipotential primordium. For testis development, a member of the Sox (Sry-related high-mobility group box) family of transcription factors, SRY (sex-determining region of the Y chromosome; Sry in mice) is expressed as a primary trigger by the supporting cell lineage, the precursor cells to the Sertoli cell lineage (DiNapoli and Capel 2008). Between 11.5 and 12.5 dpc in mice, the following events were established in the XY gonad: increased proliferation of coelomic epithelial cells, migration of cells from the mesonephros, structural organization of the testis cords, appearance of a male-specific coelomic vessel and differentiation of the steroidogenic Leydig cells (Brennan and Capel 2004).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams IR, McLaren A (2002) Sexually dimorphic development of mouse primordial germ cells: switching from oogenesis to spermatogenesis. Development 129:1155–1164

    PubMed  CAS  Google Scholar 

  • Behringer RR, Finegold MJ, Cate RL (1994) Mullerian inhibiting substanece function during mammalian sexual development. Cell 79:415–425

    Article  PubMed  CAS  Google Scholar 

  • Bendsen E, Byskov AG, Laursen SB, Larsen H-PE, Andersen CY, Westergaaed LG (2003) Number of germ cells and somatic cells in human fetal testes during the first weeks after sex differentiation. Hum Reprod 18:13–18

    Article  PubMed  CAS  Google Scholar 

  • Bishop CE, Whitworth DJ, Qin Y, Agoulnik AI, Agoulnik IU, Harison WR, Behringer RR, Oberbeek RA (2000) A transgenic insertion upstream of Sox9 is associated with dominant XX sex reversal in the mouse. Nat Genet 26:490–494

    Article  PubMed  CAS  Google Scholar 

  • Bitgood MJ, Shen L, McMahon AP (1996) Sertoli cell signaling by Desert hedgehog regulates the male germline. Curr Biol 6:298–304

    Article  PubMed  CAS  Google Scholar 

  • Bowles J, Knight D, Smith C, Wilhelm D, Richman J, Mamiya S, Yashiro H, Chawengsaksophak K, Wilson MJ, Rossant J, Hamada H, Koopman P (2006) Retinoic signalling determines germ cell fate in mice. Science 312:596–600

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Capel B (2004) One tissue, two fates: molecular genetic events that underlie testis versus ovary development. Nat Rev Gen 5:509–521

    Article  CAS  Google Scholar 

  • Brennan J, Karl J, Capel B (2002) Divergent vascular mechanisms downstream of Sry establish the arterial system in the XY gonad. Dev Biol 244:418–428

    Article  PubMed  CAS  Google Scholar 

  • Brennan J, Tilmannn C, Capel B (2003) Pdgfr- a mediates testis cord organization and fetal Leydig cell development in the XY gonad. Genes Dev 17:800–810

    Article  PubMed  CAS  Google Scholar 

  • Buehr M, Gu S, McLaren A (1993) Mesonephric contribution to testis differentiation in the fetal mouse, Development 117:273–281

    PubMed  CAS  Google Scholar 

  • Byskov AG (1986) Differentiation of mammalian embryonic gonad. Phys Rev 66:71–117

    CAS  Google Scholar 

  • Capel B, Albrecht KH, Washburn LL, Eicher EM (1999) Migration of mesonephric cells into mammalian gonad depends on Sry. Mech Dev 84:127–131

    Article  PubMed  CAS  Google Scholar 

  • Chiquoine AD (1954) The identification, origin, and migration of the primordial germ cells in the mouse embryo. Anat Rec 118:135–146

    Article  PubMed  CAS  Google Scholar 

  • Colvin JS, Green RP, Schmahl J, Capel B, Ornitz DM (2001) Male-to-female sex reversal in mice lacking fibroblast growth factor 9. Cell 104:875–889

    Article  PubMed  CAS  Google Scholar 

  • Cool J, Carmona FD, Szucsik JC, Capel B (2008) Peritubular myoid cells are not the migrating population required for testis cord formation in the XY gonad. Sex Dev 2:128–133

    Article  PubMed  CAS  Google Scholar 

  • Coveney D, Cool J, Capel B (2008) Four-dimensional analysis of vascularization during primary development of an organ, the gonad. Proc Natl Acad Sci USA 105:7212–7217

    Article  PubMed  CAS  Google Scholar 

  • DiNapoli L, Capel B (2008) SRY and the standoff in sex determination. Mol Endocrinol 22:1–9

    Article  PubMed  CAS  Google Scholar 

  • DiNapoli L, Batchvarov J, Capel B (2006) FGF9 promotes survival of germ cells in the fetal testis. Development 133:1519–1527

    Article  PubMed  CAS  Google Scholar 

  • Durcova-Hills G, Adams IR, Barton SC, Surani MA, McLaren A (2006) The role of exogenous fibroblast growth factor-2 on the reprogramming of primordial germ cells into pluripotent stem cells. Stem Cells 24:1441–1449

    Article  PubMed  CAS  Google Scholar 

  • Ginsburg M, Snow MH, McLaren A (1990) Primordial germ cells in the mouse embryo during gastrulation. Development 110:521–528

    PubMed  CAS  Google Scholar 

  • He J, Wang Y, Li YL (2007) Fibroblast-like cells derived from gonadal ridges and dorsal mesenteries of human embryos as feeder cells for culture of human embryonic germ cells. J Biomed Sci 14:617–628

    Article  PubMed  Google Scholar 

  • Jeanes A, Wilhelm D, Wilson MJ, Bowles J, McClive PJ, Sinclair AH, Koopman P (2005) Evaluation of candidate markers for peritubular myoid cell lineage in the developing mouse testis. R eproduction 130: 509–516

    CAS  Google Scholar 

  • Karl J, Capel B (1998) Sertoli cells of the mouse testis originate from coelomic epithelium. Dev Biol 203:323–333

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Capel B (2006) Balancing the bipotential gonad between alternative organ fates: a new perspective on an old problem. Dev Dyn 235:2292–2300

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Kobayashi A, Sekido R, DiNapoli L, Brennan J, Chaboissier M-C, Poulat F, Behringer RR, Lovell-Badge R, Capel B (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4(6):e187. doi:10.1371/journal.pbio.0040187

    Article  PubMed  Google Scholar 

  • Martineau J, Nordqvist K, Tilmann C, Lovell-Badge R, Capel B (1997) Male-specific cell migration into the developing gonad. Curr Biol 7:958–968

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1991) Development of the mammalian gonad: the fate of the supporting lineage. Bioessays 13:151–156

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (2000) Germ and somatic cell lineages in the developing gonad. Mol Cell Endocrinol 163:3–9

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Jameson JL (2005) Transcriptional regulation of gonadal development and differentiation . Endocrinology 146:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Park SY, Tong M, Jameson JL (2007) Distinct roles for steroidogenic factor 1 and desert hedgehog pathways in fetal and adult Leydig cell development. Endicrinology 148:3704–3710

    Article  CAS  Google Scholar 

  • Ross AJ, Capel B (2005) Signaling at the crossroads of gonad development. Trends Endocrinol Metab 16:19–25

    Article  PubMed  CAS  Google Scholar 

  • Schmahl J, Eicher EM, Washburn LL, Capel B (2000) Sry induces cell proliferation in the mouse gonad. Development 127:65–73

    PubMed  CAS  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  PubMed  CAS  Google Scholar 

  • Shovlin TC, Durcova-Hills G, Surani A, McLaren A (2008) Heterogeneity in imprinted methylation patterns of pluripotent embryonic germ cells derived from pre-migratory mouse germ cells. Dev Biol 313:674–681

    Article  PubMed  CAS  Google Scholar 

  • Tam PP, Snow MH (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J Embryol Exp Morphol 64:133–147

    PubMed  CAS  Google Scholar 

  • Tang H, Brennan J, Karl J, Hamada Y, Raetzman L, Capel B (2008) Notch signalling maintains Leydig progenitor cells in the mouse testis. Development 135:3745–3753

    Article  PubMed  CAS  Google Scholar 

  • Tilmann C, Capel B (1999) Mesonephric cell migration induces testis cord formation and Sertoli cell differentiation in the mammalian gonad. Development 126:2883–2890

    PubMed  CAS  Google Scholar 

  • Vidal VP, Chaboissier M-C, de Rooij DG, Schedl A (2001) Sox9 induces testis development in XX transgenic mice. Nat Genet 28:216–217

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm D, Martinson F, Bradford S, Wilson MJ, Combes AN, Beverdam A, Bowles J, Mizusaki H, Koopman P (2005) Sertoli cell differentiation is induced both cell-autonomously and trough prostaglandin signaling during mammalaian sex determination. Dev Biol 287:111–124

    Article  PubMed  CAS  Google Scholar 

  • Wilhelm D, Palmer S, Koopman P (2007) Sex determination and gonadal development in mammals. Physiol Rev 87:1–28

    Article  PubMed  CAS  Google Scholar 

  • Wilson MJ, Bowles J, Koopman P (2006) The matricellular protein SPARC is internalized in Sertoli, Leydig, and germ cells during testis differentiation. Mol Reprod Dev 73:531–539

    Article  PubMed  CAS  Google Scholar 

  • Wright E, Hargrave MR, Christiansen J, Cooper L, Kum J, Evans T, Gangadharan U, Greenfeld A, Koopman R (1995) The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos. Nat Genet 9:15–20

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Mann MRW, Lee SS, Marh J, McCarrey JR, Yanagomachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Capel B (2002) Disruption of testis cords by cyclopamine or forskolin reveals independent cellular pathways in testis organogenesis. Dev Biol 246:356–365

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Whoriskey W, Capel B (2002) Desert Hedgehog/Patched 1 signaling specifies fetal Leydig cell fate in testis organogenesis. Genes Dev 16:1433–1440

    Article  PubMed  CAS  Google Scholar 

  • Yao HH-C, Aardema J, Holthusen K (2006) Sexually dimorphic regulation of inhibin B in establishing gonatal vasculature in mice. Biol Reprod 74:978–983

    Article  PubMed  CAS  Google Scholar 

  • McLaren A (1998) Gonad development: assembling the mammalian testis. Curr Biol 8:R175 – R177

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michail S. Davidoff .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davidoff, M.S., Middendorff, R., Müller, D., Holstein, A.F. (2009). Development of the Testis. In: The Neuroendocrine Leydig Cells and their Stem Cell Progenitors, the Pericytes. Advances in Anatomy, Embryology and Cell Biology, vol 205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00513-8_6

Download citation

Publish with us

Policies and ethics