Skip to main content

Blood-Brain Barrier Transport for RNAi

  • Chapter
  • First Online:
Therapeutic Ribonucleic Acids in Brain Tumors

Abstract

RNAi-based therapeutics represent a new generation of potential drugs for the treatment of disorders of the central nervous system, including brain tumors and neurogenerative diseases like Alzheimer's and Huntington's disease. However, the progress in this field is limited by the poor transport of these molecules across cellular and vascular barriers. A global brain distribution of shRNA expressing genes and siRNA molecules, as well as the targeting of specific regions of the brain, is even more complicated because conventional delivery systems, as in the case of viruses, have poor diffusion in brain when injected in situ and do not cross the blood-brain barrier (BBB), which is only permeable to lipophilic molecules of less than 400 Da. Advances in the “Trojan Horse Liposome” (THL) technology applied to the transvascular non-viral gene therapy of brain disorders presents a promising solution to the shRNA delivery problem. The THL is comprised of immunoliposomes carrying shRNA expression plasmids for RNAi effect. The tissue target specificity of THL is given by conjugation of ∼1% of the PEG residues in the THL surface to peptidomimetic monoclonal antibodies (MAb) that bind to specific endogenous receptors located on both the BBB and on brain cellular membranes, i.e. insulin receptor and transferrin receptor (TfR). These MAbs mediate (1) receptor-mediated transcytosis of the THL complex through the BBB, (2) endocytosis into brain cells, and (3) transport to the brain cell nuclear compartment. More recently, conjugates of an anti-TfR MAb and streptavidin were able to deliver biotinylated-siRNA to brain tumors in vivo following intravenous administration, and to produce silencing of a target transcript within the brain tumor. This review presents an overview on this RNAi transport technology and its current application to experimental brain tumor models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Terada K, Wakimoto H et al (2003) PTEN decreases in vivo vascularization of experimental gliomas in spite of proangiogenic stimuli. Cancer Res 63:2300–2305

    CAS  PubMed  Google Scholar 

  • Barron LG, Uyechi LS, Szoka FC Jr (1999) Cationic lipids are essential for gene delivery mediated by intravenous administration of lipoplexes. Gene Ther 6:1179–1183

    Article  CAS  PubMed  Google Scholar 

  • Barth RF (1998) Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomas. J Neurooncol 36:91–102

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ (2007) Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm Res 24:1772–1787

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Pardridge WM (1998) Ten nucleotide cis element in the 3′-untranslated region of the GLUT1 glucose transporter mRNA increases gene expression via mRNA stabilization. Mol Brain Res 59:109–113

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang YF, Zhang Y et al (2007a) Humanization of anti-human insulin receptor antibody for drug targeting across the human blood-brain barrier. Biotechnol Bioeng 96:381–391

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al (2007b) Genetic engineering, expression, and activity of a fusion protein of a human neurotrophin and a molecular Trojan horse for delivery across the human blood-brain barrier. Biotechnol Bioeng 97:1376–1386

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al (2007c) Fusion antibody for Alzheimer's disease with bidirectional transport across the blood-brain barrier and abeta fibril disaggregation. Bioconjug Chem 18:447–455

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al (2008a) Genetic engineering, expression, and activity of a chimeric monoclonal antibody-avidin fusion protein for receptor-mediated delivery of biotinylated drugs in humans. Bioconjug Chem 19:731–739

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al (2008b) GDNF fusion protein for targeted-drug delivery across the human blood-brain barrier. Biotechnol Bioeng 100:387–396

    Article  CAS  PubMed  Google Scholar 

  • Boado RJ, Zhang Y, Zhang Y et al (2008c) Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood-brain barrier. Biotechnol Bioeng 99:475–484

    Article  CAS  PubMed  Google Scholar 

  • Byrnes AP, Rusby JE, Wood MJ et al (1995) Adenovirus gene transfer causes inflammation in the brain. Neuroscience 66:1015–1024

    Article  CAS  PubMed  Google Scholar 

  • Coloma MJ, Lee HJ, Kurihara A et al (2000) Transport across the primate blood-brain barrier of a genetically engineered chimeric monoclonal antibody to the human insulin receptor. Pharm Res 17:266–274

    Article  CAS  PubMed  Google Scholar 

  • Dewey RA, Morrissey G, Cowsill CM et al (1999) Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nat Med 5:1256–1263

    Article  CAS  PubMed  Google Scholar 

  • Driesse MJ Vincent AJ, Sillevis Smitt PA et al (1998) Intracerebral injection of adenovirus harboring the HSVtk gene combined with ganciclovir administration: toxicity study in nonhuman primates. Gene Ther 5:1122–1129

    Article  CAS  PubMed  Google Scholar 

  • Driesse MJ, Esandi MC, Kros JM et al (2000) Intra-CSF administered recombinant adenovirus causes an immune response-mediated toxicity. Gene Ther 7:1401–1409

    Article  CAS  PubMed  Google Scholar 

  • Ewald JA, Coker KJ, Price JO et al (2001) Stimulation of mitogenic pathways through kinase-impaired mutants of the epidermal growth factor receptor. Exp Cell Res 268:262–273

    Article  CAS  PubMed  Google Scholar 

  • Gabizon A, Papahadjopoulos D (1988) Liposome formulations with prolonged circulation time in blood and enhanced uptake by tumors. Proc Natl Acad Sci USA 85:6949–6953

    Article  CAS  PubMed  Google Scholar 

  • Green NM (1990) Avidin and streptavidin. Methods Enzymol 184:51–67

    Article  CAS  PubMed  Google Scholar 

  • Heimberger AB, Learn CA, Archer GE et al (2002) Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (iressa). Clin Cancer Res 8:3496–3502

    CAS  PubMed  Google Scholar 

  • Hernandez M, Barrero MJ, Crespo MS et al (2000) Lysophosphatidic acid inhibits Ca2+ signaling in response to epidermal growth factor receptor stimulation in human astrocytoma cells by a mechanism involving phospholipase Cγ and a Gαi protein. J Neurochem 75:1575–1582

    Article  CAS  PubMed  Google Scholar 

  • Herrlinger U, Kramm CM, Aboody-Guterman KS (1998) Breakefield XO Pre-existing herpes simplex virus 1 (HSV-1) immunity decreases, but does not abolish, gene transfer to experimental brain tumors by a HSV-1 vector. Gene Ther 5:809–819

    Article  CAS  PubMed  Google Scholar 

  • Kajiwara K, Byrnes AP, Ohmoto Y et al (2000) Humoral immune responses to adenovirus vectors in the brain. J Neuroimmunol 103:8–15

    Article  CAS  PubMed  Google Scholar 

  • Lal A, Glazer CA, Martinson HM et al (2002) Mutant epidermal growth factor receptor up-regulates molecular effectors of tumor invasion. Cancer Res 62:3335–3339

    CAS  PubMed  Google Scholar 

  • Lawrence MS, Foellme HGR, Elsworth JD et al (1999) Inflammatory responses and their impact on beta-galactosidase transgene expression following adenovirus vector delivery to the primate caudate nucleus. Gene Ther 6:1368–1379

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Engelhardt B, Lesley J et al (2000) Targeting rat anti-mouse transferrin receptor monoclonal antibodies through blood-brain barrier in mouse. J Pharmacol Exp Ther 292:1048–1052

    CAS  PubMed  Google Scholar 

  • Luo X, Gong X, Tang CK (2003) Suppression of EGFRvIII-mediated proliferation and tumorigenesis of breast cancer cells by ribozyme. Int J Cancer 104:716–721

    Article  CAS  PubMed  Google Scholar 

  • Luwor RB, Johns TG, Murone C et al (2001) Monoclonal antibody 806 inhibits the growth of tumor xenografts expressing either the de2-7 or amplified epidermal growth factor receptor (EGFR) but not wild-type EGFR. Cancer Res 61:5355–5361

    CAS  PubMed  Google Scholar 

  • Lynch TJ, Bell DW, Sordella R et al (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  CAS  PubMed  Google Scholar 

  • Matsui H, Johnson LG, Randell SH et al (1997) Loss of binding and entry of liposome-DNA complexes decreases transfection efficiency in differentiated airway epithelial cells. J Biol Chem 272:1117–1126

    Article  CAS  PubMed  Google Scholar 

  • McManus MT, Sharp PA (2002) Gene silencing in mammals by small interfering RNAs. Nat Rev Genet 3:737–747

    Article  CAS  PubMed  Google Scholar 

  • McMenamin MM, Byrnes AP, Charlton HM et al (1998) A gamma345 mutant of herpes simplex 1 causes severe inflammation in the brain. Neuroscience 83:1225–1237

    Article  CAS  PubMed  Google Scholar 

  • Miller VM, Gouvion CM, Davidson BL et al (2004) Targeting Alzheimer's disease genes with RNA interference: an efficient strategy for silencing mutant alleles. Nucleic Acids Res 32:661–668

    Article  CAS  PubMed  Google Scholar 

  • Miyawaki-Shimizu K, Predescu D, Shimizu J et al (2006) siRNA-induced caveolin-1 knockdown in mice increases lung vascular permeability via the junctional pathway. Am J Physiol Lung Cell Mol Physiol 290:L405–L413

    Article  CAS  PubMed  Google Scholar 

  • Mok KW, Lam AM, Cullis PR (1999) Stabilized plasmid-lipid particles: factors influencing plasmid entrapment and transfection properties. Biochim Biophys Acta 1419:137–150

    Article  CAS  PubMed  Google Scholar 

  • Morgenstern K, Hanson-Painton O, Wang B et al (1992) Density-dependent regulation of cell surface gamma-glutamyl transpeptidase in cultured glial cells. J Cell Physiol 150:104–115

    Article  CAS  PubMed  Google Scholar 

  • Osaka G, Carey K, Cuthbertson A et al (1996) Pharmacokinetics, tissue distribution, and expression efficiency of plasmid [33P]DNA following intravenous administration of DNA/cationic lipid complexes in mice: use of a novel radionuclide approach. J Pharm Sci 85:612–618

    Article  CAS  PubMed  Google Scholar 

  • Paddison P, Caudy A, Bernstein E et al (2002) Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev 16:948–958

    Article  CAS  PubMed  Google Scholar 

  • Paez JG, Janne PA, Lee JC et al (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  CAS  PubMed  Google Scholar 

  • Papahadjopoulos D, Allen TM, Gabizon A et al (1991) Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA 88:11460–11464

    Article  CAS  PubMed  Google Scholar 

  • PardridgeWM (2002) Drug and gene delivery to the brain: the vascular route. Neuron 36:555–558

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM (2003) Gene targeting in vivo with pegylated immunoliposomes. Methods Enzymol 373:507–528

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Buciak JL, Friden PM (1991) Selective transport of an anti-transferrin receptor antibody through the blood-brain barrier in vivo. J Pharmacol Exp Ther 259:66–70

    CAS  PubMed  Google Scholar 

  • Pardridge WM, Boado RJ, Kang YS (1995a) Vector-mediated delivery of a polyamide (“peptide”) nucleic acid analogue through the blood-brain barrier in vivo. Proc Natl Acad Sci USA 92:5592–5596

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Kang YS, Buciak JL et al (1995b) Human insulin receptor monoclonal antibody undergoes high affinity binding to human brain capillaries in vitro and rapid transcytosis through the blood-brain barrier in vivo in the primate. Pharm Res 12:807–816

    Article  CAS  PubMed  Google Scholar 

  • Pardridge WM, Wu D, Sakane T (1998) Combined use of carboxyl-directed protein pegylation and vector-mediated blood-brain barrier drug delivery system optimizes brain uptake of brain-derived neurotrophic factor following intravenous administration. Pharm Res 15:576–582

    Article  CAS  PubMed  Google Scholar 

  • Schlachetzki F, Zhang Y, Boado RJ et al (2004) Gene therapy of the brain: the trans-vascular approach. Neurology 62:1275–1281

    CAS  PubMed  Google Scholar 

  • Shi N, Pardridge WM (2000) Noninvasive gene targeting to the brain. Proc Natl Acad Sci USA 97:7567–7572

    Article  CAS  PubMed  Google Scholar 

  • Shi N, Boado RJ, Pardridge WM (2001a) Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm Res 18:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Shi N, Zhang Y, Zhu C et al (2001b) Brain-specific expression of an exogenous gene after iv administration. Proc Natl Acad Sci USA 98:12754–12759

    Article  CAS  PubMed  Google Scholar 

  • Smith JG, Raper SE, Wheeldon EB et al (1997) Intracranial administration of adenovirus expressing HSV-TK in combination with ganciclovir produces a dose-dependent, self-limiting inflammatory response. Hum Gene Ther 8:943–954

    Article  CAS  PubMed  Google Scholar 

  • Song BW, Vinters HV, Wu D et al (2002) Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther 301:605–610

    Article  CAS  PubMed  Google Scholar 

  • Stallwood Y, Fisher KD, Gallimore PH et al (2000) Neutralisation of adenovirus infectivity by ascitic fluid from ovarian cancer patients. Gene Ther 7:637–643

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T, Wu D, Schlachetzki F et al (2004) Imaging endogenous gene expression in brain cancer in vivo with 111In-peptide nucleic acid antisense radiopharmaceuticals and brain drug-targeting technology. J Nucl Med 45:1766–1775

    CAS  PubMed  Google Scholar 

  • Wood MJ, Charlton HM, Wood KJ et al (1996) Immune responses to adenovirus vectors in the nervous system. Trends Neurosci 19:497–501

    Article  CAS  PubMed  Google Scholar 

  • Xia CF, Zhang Y, Zhang Y et al (2007) Intravenous siRNA of brain cancer with receptor targeting and avidin-biotin technology. Pharm Res 24:2309–2316

    Article  CAS  PubMed  Google Scholar 

  • Yao D, Jiang D, Huang Z et al (2000) Abnormal expression of hepatoma and alteration of gamma-glutamyl transferase gene methylation status in patients with hepatocellular carcinoma. Cancer 88:761–769

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Pardridge WM (2001) Neuroprotection in transient focal brain ischemia after delayed intravenous administration of brain-derived neurotrophic factor conjugated to a blood-brain barrier drug targeting system. Stroke 32:1378–1384

    CAS  PubMed  Google Scholar 

  • Zhang Y, Pardridge WM (2006) Blood-brain barrier targeting of BDNF improves motor function in rats with middle cerebral artery occlusion. Brain Res 1111:1227–1229

    Article  Google Scholar 

  • Zhang Y, Lee HY, Boado RJ et al (2002a) Receptor-mediated delivery of an antisense gene to human brain cancer cells. J Gene Med 4:183–194

    Article  PubMed  Google Scholar 

  • Zhang Y, Zhu C, Pardridge WM (2002b) Antisense gene therapy of brain cancer with an artificial virus gene delivery system. Mol Ther 6:67–72

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, F Calon, Zhu C et al (2003a) Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Human Gene Ther 14:1–12

    Article  Google Scholar 

  • Zhang Y, Schlachetzki F, Pardridge WM (2003b) Global non-viral gene transfer to the primate brain following intravenous administration. Mol Ther 7:11–17

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Boado RJ, Pardridge WM (2003c) Marked enhancement in gene expression by targeting the human insulin receptor. J Gene Med 5:157–163

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Boado RJ, Pardridge WM (2003d) In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J Gene Med 5:1039–1045

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schlachetzki F, Li JY et al (2003e) Organ-specific gene expression in the rhesus monkey eye following intravenous non-viral gene transfer. Mol Vis 9:465–472

    CAS  PubMed  Google Scholar 

  • Zhang YF, Boado RJ, Pardridge WM (2003f) Absence of toxicity of chronic weekly intravenous gene therapy with pegylated immunoliposomes. Pharm Res 20:1779–1785

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Zhang YF, Bryant J et al (2004a) Intravenous RNA interference gene therapy targeting the human epidermal growth factor receptor prolongs survival in intracranial brain cancer. Clin Cancer Res 10:3667–3677

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Schlachetzki F, Zhang YF et al (2004b) Normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental Parkinsonism with intravenous nonviral gene therapy and brain-specific promoter. Human Gene Ther 15:339–350

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben J. Boado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Boado, R.J., Pardridge, W.M. (2009). Blood-Brain Barrier Transport for RNAi. In: Erdmann, V., Reifenberger, G., Barciszewski, J. (eds) Therapeutic Ribonucleic Acids in Brain Tumors. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00475-9_12

Download citation

Publish with us

Policies and ethics