Skip to main content
  • 3423 Accesses

Abstract

Besides the various plate problems discussed in the previous chapters, the idea of the generalized conforming element has already been successfully generalized to many other area. As the final chapter of Part II, this chapter mainly introduces some research achievements on the applications of the generalized conforming element method for isoparametric membrane element (Sect. 11.2), membrane element with drilling freedoms (Sects. 11.3 and 11.4), flat-shell element (Sect. 11.5), curved shell element (Sects. 11.6 and 11.7) and shell element for geometrically nonlinear analysis (Sects. 11.8 and 11.9). Thus, the universal significa nee of the generalized conforming theory can be clearly illustrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Long YQ, Huang MF (1988) A generalized conforming isoparametric element. Applied mathematics and Mechanics (English Edition) 9(10): 929–936

    Article  MATH  Google Scholar 

  2. Long YQ, Xu Y (1994) Generalized conforming quadrilateral membrane element with vertex rigid rotational freedom. Computers & Structures 52(4): 749–755

    Article  MATH  Google Scholar 

  3. Long YQ, Xu Y (1994) Generalized conforming triangular membrane, element with vertex rigid rotational freedom. Finite Elements in Analysis and Design 17: 259–271

    Article  Google Scholar 

  4. Long YQ, Xu Y (1993) Generalized conforming triangular flat shell element. Gong Cheng Li Xue/Engineering Mechanics 10(4): 1–7 (in Chinese)

    Google Scholar 

  5. Long YQ, Xu Y (1994) Generalized conforming flet rectangular thin shell element. Computational Structural Mechanics and Applications 11$(2): 154–160 (in Chinese)

    Google Scholar 

  6. Xu Y, Long YQ, Long ZF (1994) A triangular shell element with drilling freedoms based on generalized compatibility conditions. In: Proc. WCCMIII. Japan. pp 1234–1235

    Google Scholar 

  7. Xu Y, Long ZF (1996) Advances of membrane and thin shell elements with the generalized conforming approach. In: Yuan Si, Ma Zhiliang (eds) New Developments in Structural Engineering, pp 218–223

    Google Scholar 

  8. Xu Y, Long YQ, Long ZF (1999) A generalized conforming triangular flat shell element with high accuracy. In: Long YQ (ed) The Proceedings of the First International Conference on Structural Engineering. China, KunMing, pp 700–706

    Google Scholar 

  9. Chen YL, Cen S, Yao ZH, Long YQ, Long ZF (2003) Development of triangular flat-shell element using a new thin-thick plate bending element based on Semi Loof constrants. Structural Engineering and Mechanics 15(1): 83–114

    Article  Google Scholar 

  10. Sun JH, Xia HX, Long YQ (1999) A generalized conforming rectangular shallow shell element. In: Long YQ (ed) The Proceedings of the First International Conference on Structural Engineering. China, KunMing, pp 803–810

    Google Scholar 

  11. Sun JH, Long ZF, Long YQ (1999) A generalized conforming element with vertex rotational freedoms for thin shell analysis. In: Long YQ (ed) The Proceedings of the First International Conference on Structural Engineering. China, Kun Ming, pp 811–818

    Google Scholar 

  12. Sun JH, Long ZF, Long YQ, Zhang CS (2001) Geometrically nonlinear stability analysis of shells using generalized conforming shallow shell element. International Journal of Structural Stability and Dynamics 1(3): 313–332

    Article  MATH  Google Scholar 

  13. Wilson EL, Taylor RL, Doherty WP, Ghabussi T (1973) Incompatible displacement models. In: Fenven ST et al (eds) Numerical and Computer Methods in Structural Mechanics. Academic Press, New York, pp 43–57

    Google Scholar 

  14. Long YQ, Xin KG (1989) Generalized conforming element for bending and buckling analysis of plates. Finite Elements in Analysis and Design 5: 15–30

    Article  MATH  Google Scholar 

  15. Taylor RL, Beresford PJ, Wilson EL (1976) A non-conforming element for stress analysis. International Journal for Numerical Methods in Engineering 10: 1211–1219

    Article  MATH  Google Scholar 

  16. Wachspress EL (1978) Incomptiable quadrilateral basis function. International Journal for Numerical Methods in Engineering 12: 589–595

    Article  MATH  Google Scholar 

  17. Pian THH, Wu CC (1986) General formulation of incompatible shape function and an incompatible isoparametric element. In: Proc of the Invitational China-America Workshop on FEM. Chengde pp 159–165

    Google Scholar 

  18. Chen WJ, Tang LM (1981) Isoparametric quasi-conforming element. Journal of Dalian Institute of Technology 20(1): 63–74 (in Chinese)

    Google Scholar 

  19. Cook RD (1974) Improved two-dimensional finite element. Journal of the Structural Division ASCE, 100ST9: 1851–1863

    Google Scholar 

  20. Zienkiewicz OC, Taylor RL (1991) The finite element method, 4th edn. Volume 2 Solid and Fluid Mechanics & Dynamics and Non-linearity. McGRAW-HILL Book Company, London

    Google Scholar 

  21. Clough RW, Johnson CP (1968) A finite element approximation for the analysis of thin shells. International Journal of Solids and Structures 4: 43–60

    Article  MATH  Google Scholar 

  22. Olsen MD, Bearden TW (1979) A simple flat shell element revisited. International Journal for Numerical Methods in Engineering 14: 51–68

    Article  Google Scholar 

  23. Allman DJ (1988) A quadrilateral finite element includings vertex rotation for plane elasticity analysis. International Journal for Numerical Method in Engineering 26: 717–730

    Article  MATH  Google Scholar 

  24. Felippa CA, Alexander S (1992) Membrane triangle with corner drilling freedom — III. Implementations and performance evolution. Finite Element in Analysis and Design 12: 203–249

    Article  MATH  Google Scholar 

  25. Bergan PG, Felippa CA (1985) A triangular membranes element with rotational degrees of freedom. Computer Methods in Applied Mechanics and Engineering 50: 25–69

    Article  MATH  Google Scholar 

  26. Long ZF, Cen S (1992) New monograph of finite element method: principle, programming, developments. Hydraulic and Water-power Press, China, Beijing (in Chinese)

    Google Scholar 

  27. Long YQ, Bu XM, Long ZF, Xu Y (1995) Generalized conforming plate bending elements using point and line compatibility condition. Computers & Structures 54(4): 717–723

    Article  MATH  Google Scholar 

  28. Fish J, Belytshko T (1992) Stabilized rapidly convergent 18-degree-of-freedom flat shell triangular element. International Journal for Numerical Methods in Engineering 33: 149–162

    Article  Google Scholar 

  29. Chen WJ, Cheung YK (1999) Refined non-conforming triangular elements for analysis of shell structures. International Journal for Numerical Methods in Engineering 46: 433–455

    Article  MATH  Google Scholar 

  30. Providas E, Kattis MA (2000) An assessment of two fundamental flat triangular shell elements with drilling rotations. Computers & Structure 77(2): 129–139

    Article  Google Scholar 

  31. Carpenter N, Stolarski H, Belyschko T (1986) Improvements in 3-node triangular shell elements. International Journal for Numerical Methods in Engineering 23: 1643–1667

    Article  MATH  Google Scholar 

  32. ABAQUS/Standard User’s Manual, Version 5.8. (1998) Hibbitt Karlsson & Sorensen, Inc.: Rawtucket, Rhode Island

    Google Scholar 

  33. MacNeal RH, Harder RL (1985) A proposed standard set of problems to test finite element accurary. Finite Element in Analysis and Design 1: 3–20

    Article  Google Scholar 

  34. Aminpour MA (1992) An assumed-stress hybrid 4-node shell element with drilling degrees of freedom. International Journal for Numerical Methods in Engineering 33: 19–38

    Article  MATH  Google Scholar 

  35. Guan Y, Tang L (1992) A quasi-conforming nine-node degenerated shell finite element. Finite Elements in Analysis and Design 11: 165–176

    Article  MATH  Google Scholar 

  36. Batoz JL, Tahar MB (1982) Evaluation of a new quadrilateral thin plate bending element. International Journal for Numerical Methods in Engineering 18: 1655–1677

    Article  MATH  Google Scholar 

  37. Bathe KJ, Dvorkin EN (1985) Short communication: a four-node plate bending element based on Mindlin/Ressiner plate theory and mixed interpolation. International Journal for Numerical Methods in Engineering 21: 367–383

    Article  MATH  Google Scholar 

  38. Chen WJ (2001) Advances in finite element with high performances. In: Yuan MW, Sun SL (eds) Computational Mechanics in Engineering and Science (Proceedings of the Chinese Conference on Computational Mechanics 2001). Peking University Press, China. Guanzhou, pp 136–151 (in Chinese)

    Google Scholar 

  39. Parish HA (1979) Critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration. Computer Methods in Applied Mechanics and Engineering 20: 323–350

    Article  Google Scholar 

  40. Long YQ, Zhao JQ (1992) Generalized conforming curved rectangular element for shallow shells. Gong Cheng Li Xue/Engineering Mechanics, 9(1): 3–10 (in Chinese)

    Google Scholar 

  41. Long YQ, Xi F (1992) A universal method for including shear deformation in thin plate elements. International Journal for Numerical Methods in Engineering 34: 171–177

    Article  MATH  Google Scholar 

  42. Sun JH (1998) Research on generalized conforming shallow shell element and nonlinear analysis of plate and shell structures [Doctoral Dissertation]. Tsinghua University, Beijing (in Chinese)

    Google Scholar 

  43. Bu XM, Long YQ (1991) A high-precise rectangular element for thin plate bending analysis. Tumu Gongcheng Xuebao/China Civil Engineering Journal 24(1): 17–22 (in Chinese)

    Google Scholar 

  44. Bonnes G, Dhatt G, Giroux Y, Robichaud (1968) Curved triangular elements for analysis of shell. In: Proceedings of Conference on Matrix Method in Structural Mechanics. A. F. Base, Ohio: Wright Patterson pp 617–640

    Google Scholar 

  45. Cowper G, Lindberg GM, Olson MD (1970) A shallow shell finite element of triangular shape. International Journal of Solids and Structures 6: 1133–1156

    Article  Google Scholar 

  46. Cook RD (1974) Concept and Applications of Finite Element Analysis. John Wiley & Sons, Inc, New York

    Google Scholar 

  47. Badiansky B (1974) Theory of buckling and post-buckling behavior of elastic structure. In: Yih Chia-Shun (eds) Advances in Applied Mechanics (Vol. 14). Academic Press, New York, pp 2–63

    Google Scholar 

  48. Jiang HY (1984) Nonlinear finite element method of quasi-conforming techniques model. Computational Structural Mechanics and Application 1(2): 49–59 (in Chinese)

    Google Scholar 

  49. Pica A, Wood RD, Hinton E (1980) Finite element analysis of geometrically nonlinear plate behaviour using a Mindlin formulation. Computers & Structures 11: 203–215

    Article  MathSciNet  MATH  Google Scholar 

  50. Sabir AB, Lock AC (1972) The application of finite element to the large deflection geometrically nonlinear behavior of cylindrical shells. In: Brebbia CA (ed) Variational Methods in Engineering, Southampton University Press, Southampton pp 54–65

    Google Scholar 

  51. Ramesh G, Krishnamoorthy CS (1993) Post-buckling analysis of structures by dynamic relaxation. International Journal for Numerical Methods in Engineering 36: 1339–1364

    Article  MATH  Google Scholar 

  52. Wei G, Zhao CX (1990) A large deflection quasi-conforming rectangular shallow shell element and applications. Computational Structural Mechanics and Applications 7(1): 15–43 (in Chinese)

    MathSciNet  Google Scholar 

  53. Crisfield MA (1981) A fast incrementaliterative solution procedure that handles “snap-through”. Computers & Structures 13: 55–62

    Article  MATH  Google Scholar 

  54. Horrigmoe G, Bergan PG (1978) Nonlinear analysis of free-form shells by flat finite elements. Computer Methods in Applied Mechanics and Engineering 16: 11–35

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Tsinghua University Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

Long, ZF., Cen, S. (2009). Generalized Conforming Membrane and Shell Elements. In: Advanced Finite Element Method in Structural Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00316-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00316-5_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00315-8

  • Online ISBN: 978-3-642-00316-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics