Skip to main content

Application of Self-Organizing Maps to the Maritime Environment

  • Conference paper
  • First Online:
Information Fusion and Geographic Information Systems

Part of the book series: Lecture Notes in Geoinformation and Cartography ((LNGC))

Abstract

Self-Organizing Maps (SOMs), or Kohonen networks, are widely used neural network architecture. This paper starts with a brief overview of how SOMs can be used in different types of problems. A simple and intuitive explanation of how a SOM is trained is provided, together with a formal explanation of the algorithm, and some of the more important parameters are discussed. Finally, an overview of different applications of SOMs in maritime problems is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen T (2001) Self-Organizing Maps. 3rd ed. Information Sciences. Berlin-Heidelberg: Springer

    Book  Google Scholar 

  2. Fu L (1994) Neural Networks in Computer Intelligence. Singapore: McGraw Hill

    Google Scholar 

  3. Niang A, et al. (2003) Automatic neural classification of ocean color reflectance spectra at the top of the atmosfphere with introduction of expert knowledge. J Remote Sensing of Environment 86: 257-271

    Article  Google Scholar 

  4. Kohonen T (1982) Clustering, Taxonomy, and Topological Maps of Patterns. In: Proceedings of the 6th International Conference on Pattern Recognition

    Google Scholar 

  5. Kohonen T (1988) The 'neural' phonetic typewriter. J Computer 21(3): 11-22

    Article  Google Scholar 

  6. MacQueen J (1967) Some methods for classification and analysis of multivariate observation. In: 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press

    Google Scholar 

  7. Loyd SP (1982) Least Squares quantization in PCM. J Transactions on Information Theory 28(2): 129-137

    Article  Google Scholar 

  8. Selim SZ and Ismail MA (1984) k-means type algorithms: a generalized convergence theorem and characterization of local optimality. J Trans. Pattern Analysis and Machine Intelligence 6: 81-87

    Article  Google Scholar 

  9. Bacao F, Lobo V, and Painho M (2005) Self-organizing Maps as Substitutes for K-Means Clustering. In: Sunderam VS, et al (eds) Lecture Notes in Computer Science, Springer-Verlag: Berlin Heidelberg, pp 476-483

    Google Scholar 

  10. Sammon JWJ (1969) A Nonlinear Mapping for Data Structure Analysis. J Transactions on Computers, C-18(5): 401-409

    Article  Google Scholar 

  11. Ultsch A and Siemon HP (1990) Kohonen's Self-Organizing Neural Networks for Exploratory Data Analysis. In: Intl. Neural Network Conf. INNC90, Paris

    Google Scholar 

  12. Altinel IK, Aras N, and Oommen BJ (2000) Fast, Efficiente and accurate solutions to the Hamiltonian path problem using neural approaches. J Computers & Operations Research 27: 461-494

    Article  Google Scholar 

  13. Henriques R (2006) Cartogram creation using self-organizing maps. In: ISEGI, New University of Lisbon: Lisbon. p 144

    Google Scholar 

  14. Haykin S (1999) Neural Networks: A Comprehensive Foundation. 2 ed

    Google Scholar 

  15. Martinetz TM, Berkovich SG, and Schulten KJ (1993) Neural-Gas network for vector quantization and its application to time-series prediction. J Transactions on Neural Networks 4(4): 558-569

    Article  Google Scholar 

  16. Kohonen T (1995) Self-Organizing Maps. 1st ed, Berlin-Heidelberg: Springer

    Book  Google Scholar 

  17. Erwin E, Obermeyer K, Schulten K (1991) Convergence properties of self-organizing maps. In: Kohonen T, et al (eds) Artificial Neural Networks, Elsevier, pp 409-414

    Google Scholar 

  18. Ritter H, Martinetz TM, Schulten K (1992) Neural Computation and Self-Organizing Maps: an introduction. Addison-Wesley

    Google Scholar 

  19. Ultsch A (2005) Clustering with SOM: U*C. In: WSOM 2005, Paris

    Google Scholar 

  20. Kangas JA, Kohonen TK, Laaksonem JT (1990) Variants of Self-Organizing Maps. J Transactions on Neural Networks 1(1): 93-99

    Article  Google Scholar 

  21. Bação F, Lobo V, Painho M (2005) The Self-Organizing Map, the Geo-SOM, and relevant variants for geosciences. J Computers and Geosciences 31(2): 155-163

    Article  Google Scholar 

  22. Ambroise C et al (1996) Analyzing dissimilarity matrices via Kohonen maps. In: 5th Conference of the International Federation of Classification Societies (IFCS 1996). Kobe, Japan

    Google Scholar 

  23. Cottrell M, Ibbou S, Letremy P (2004) SOM-based algorithms for qualitative variables. J Neural Networks 17(8-9): 1149-1167

    Article  Google Scholar 

  24. Lobo V, Bandeira N, Moura-Pires F (1998) Distributed Kohonen networks for Passive Sonar Based Classification. In: FUSION 98, Las Vegas, NV, USA

    Google Scholar 

  25. Lourenço F, Lobo V, Bação F (2004) Binary-based similarity measures for categorical data and their application in Self-Organizing Maps. In: JOCLAD 2004, XI Jornadas de Classificação e Análise de Dados, Lisbon

    Google Scholar 

  26. Guimarães G, Lobo V, Moura-Pires F (2002) A taxonomy of Self-organizing Maps for temporal sequence processing. J Intelligent Data Analysis 7(4)

    Google Scholar 

  27. Bacao F, Lobo V, Painho M (2008) Applications of Different Self-Organizing Map Variants to Geographical Information Science Problems. In: Agarwal P, Skupin A (eds) Self-Organizing Maps, Applications in Geographic Information Science, John Wiley & Sons: Chichester, p 205

    Google Scholar 

  28. Bação F, Lobo V, Painho M (2005) Geo-SOM and its integration with geographic information systems. In: WSOM 05, 5th Workshop On Self-Organizing Maps, Paris

    Google Scholar 

  29. Koikkalainen P, Oja E (1990) Self-organizing hierarchical feature maps. In: International Joint Conference on Neural Networks (IJCNN'90), Washington, DC, USA

    Google Scholar 

  30. Kemke C, Wichert A (1993) Hierarchical Self-Organizing Feature Maps for Speech Recognition. In: World Conference on Neural Networks (WCNN'93), Lawrence Erlbaum, Hillsdale

    Google Scholar 

  31. Fritzke B (1991) Let it Grow - Self-organizing Feature Maps With Problem Dependent Cell Structure. In: ICANN-91, Helsinki, Elsevier Science Publ

    Google Scholar 

  32. Fritzke B (1996) Growing Self-organizing Networks - Why? In: ESANN'96 European Symposium on Artificial Neural Networks

    Google Scholar 

  33. Fritzke B (1995) A growing neural gas network learns topologies, in Advances. In: Tesauro G, Touretzky DS, Leen TK (eds), Neural Information Processing Systems, MIT Press: Cambridge MA, pp 625-632

    Google Scholar 

  34. Hammer B, Hasenfuss A, Villmann T (2007) Magnification control for batch neural gas. J Neurocomputing 70(7-9): 1225-1234

    Article  Google Scholar 

  35. Heskes T (1999) Energy Functions for Self-Organizing Maps. In: Oja E and Kaski S (eds) Kohonen Maps, Elsvier: Amsterdam, pp 303-316

    Chapter  Google Scholar 

  36. Bishop CM, Svensen M, and Williams CKI (1998) GTM: The Generative Topographic Mapping. J Neural Computation 10(1): 215-234

    Article  Google Scholar 

  37. Mather PM, Tso B, Koch M (1998) An evaluation of Landsat TM spectral data and SAR-derived textural information for lithological discrimination in the Red Sea Hills, Sudan. J International Journal of Remote Sensing 19(4): 587-604

    Article  Google Scholar 

  38. Villmann T, Merenyi E, Hammer B (2003) Neural maps in remote sensing image analysis. J Neural Networks 16(3-4): 389-403

    Article  Google Scholar 

  39. Richardson AJ, Risien C, Shillington FA (2003) Using self-organizing maps to identify patterns in satellite imagery. J Progress in Oceanography 59(2-3): 223-239

    Article  Google Scholar 

  40. Hardman-Mountford NJ, et al (2003) Relating sardine recruitment in the Northern Benguela to satellite-derived sea surface height using a neural network pattern recognition approach. J Progress in Oceanography 59(2-3): 241-255

    Article  Google Scholar 

  41. Parikh JA, et al (1999) An evolutionary system for recognition and tracking of synoptic-scale storm systems. J Pattern Recognition Letters 20(11-13): 1389-1396

    Article  Google Scholar 

  42. Leloup JA, et al (2007) Detecting decadal changes in ENSO using neural networks. J Climate Dynamics 28(2-3): 147-162

    Article  Google Scholar 

  43. Liu Y, Weisberg RH, Shay L (2007) Current Patterns on the West Florida Shelf from Joint Self-Organizing Map Analyses of HF Radar and ADCP Data. J Journal of Atmospheric and Oceanic Technology 24: 702-712

    Article  Google Scholar 

  44. Cavazos T (2000) Using self-organizing maps to investigate extreme climate events: An application to wintertime precipitation in the Balkans. J Journal of Climate 13(10): 1718-1732

    Article  Google Scholar 

  45. Lin B, et al (2002) Neural networks in data analysis and modeling for detecting littoral oil-spills by airborne laser fluorosensor remote sensing. In: Conference on Ocean Remote Sensing and Applications, Hangzhou, Peoples R China: Spie-Int Soc Optical Engineering

    Google Scholar 

  46. Liu YG, Weisberg RH, He RY (2006) Sea surface temperature patterns on the West Florida Shelf using growing hierarchical self-organizing maps. J Journal of Atmospheric and Oceanic Technology 23(2): 325-338

    Article  Google Scholar 

  47. Liu YG, Weisberg RH, Yuan YC (2008) Patterns of upper layer circulation variability in the South China Sea from satellite altimetry using the self-organizing map. J Acta Oceanologica Sinica 27: 129-144

    Google Scholar 

  48. Tozuka T, et al (2008) Tropical Indian Ocean variability revealed by self-organizing maps. J Climate Dynamics 31(2-3): 333-343

    Article  Google Scholar 

  49. Marques NC, Chen N (2003) Border detection on remote sensing satellite data using self-organizing maps. In: 11th Portuguese Conference on Artificial Intelligence, Beja, Portugal: Springer-Verlag Berlin

    Google Scholar 

  50. Chazottes A, et al (2006) Statistical analysis of a database of absorption spectra of phytoplankton and pigment concentrations using self-organizing maps. J Applied Optics 45(31): 8102-8115

    Article  Google Scholar 

  51. Solidoro C, et al (2007) Understanding dynamic of biogeochemical properties in the northern Adriatic Sea by using self-organizing maps and k-means clustering. J Journal of Geophysical Research-Oceans 112(C7): 13

    Google Scholar 

  52. Liu YG, Weisberg RH (2005) Patterns of ocean current variability on the West Florida Shelf using the self-organizing map. J Journal of Geophysical Research-Oceans 110(C6): 12

    Google Scholar 

  53. Reusch DB, Alley RB (2006) Antarctic sea ice: a self-organizing map-based perspective. In: International Symposium on Cryospheric Indicators of Global Climate Change, Cambridge, ENGLAND: Int Glaciological Soc

    Google Scholar 

  54. Kropp J, Klenke T (1997) Phenomenological pattern recognition in the dynamical structures of tidal sediments from the German Wadden Sea. J Ecological Modelling 103(2-3): 151-170

    Article  Google Scholar 

  55. Cassano EN, et al (2006) Classification of synoptic patterns in the western Arctic associated with extreme events at Barrow, Alaska, USA. J Climate Research 30(2): 83-97

    Article  Google Scholar 

  56. Hewitson BC, Crane RG (2002) Self-organizing maps: applications to synoptic climatology. J Climate Research 22(1): 13-26

    Article  Google Scholar 

  57. Kubo M, Muramoto K (2007) Classification of clouds in the Japan Sea area using NOAA AVHRR satellite images and self-organizing map. In: IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Barcelona, SPAIN

    Google Scholar 

  58. Reusch DB, Alley RB, Hewitson BC (2007) North Atlantic climate variability from a self-organizing map perspective. J Journal of Geophysical Research-Atmospheres 112(D2): 20

    Google Scholar 

  59. Fukumi M, et al (2005) Drift ice detection using a self-organizing neural network. In: 9th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, Melbourne, AUSTRALIA: Springer-Verlag Berlin

    Google Scholar 

  60. Uotila P, et al (2007) Changes in Antarctic net precipitation in the 21st century based on Intergovernmental Panel on Climate Change (IPCC) model scenarios. J Journal of Geophysical Research-Atmospheres 112(D10): 19

    Google Scholar 

  61. Chandrasekar V (2004) SOM of space borne precipitation radar rain profiles on global scale. In: IEEE International Geoscience and Remote Sensing Symposium, Anchorage, AK

    Google Scholar 

  62. Barros AP, Bowden GJ (2008) Toward long-lead operational forecasts of drought: An experimental study in the Murray-Darling River Basin. J Journal of Hydrology 357(3-4): 349-367

    Article  Google Scholar 

  63. Hyun K, et al (2005) Using an artificial neural network to patternize long-term fisheries data from South Korea. J Aquatic Sciences 67(3): 382-389

    Google Scholar 

  64. Chakraborty B, et al (2003) Application of artificial neural networks to segmentation and classification of topographic profiles of ridge-flank seafloor. J Current Science 85(3): 306-312

    Google Scholar 

  65. Ultsch A, Roske F (2002) Self-organizing feature maps predicting sea levels. Information Sciences 144(1-4): 91-125

    Article  Google Scholar 

  66. Barreto GA, Araújo AFR, Ritter HJ (2003) Self-Organizing Feature Maps for Modeling and Control of Robotic Manipulators. J Journal of Intelligent and Robotic Systems 36(4): 407-450

    Article  Google Scholar 

  67. Nishida S, et al (2004) Adaptive learning to environment using self-organizing map and its application for underwater vehicles. In: 4th International Symposium on Underwater Technology, Taipei, TAIWAN

    Google Scholar 

  68. Ishii K, et al (2004) A self-organizing map based navigation system for an underwater robot. In: IEEE International Conference on Robotics and Automation, New Orleans, LA

    Google Scholar 

  69. Nishida S, et al (2007) Self-organizing decision-making system for AUV. In: 5th International Symposium on Underwater Technology/5th Workshop on Scientific Use of Submarine Cables and Related Technologies, Tokyo, JAPAN

    Google Scholar 

  70. Patton R, Webb M, Gaj R (2001) Covert Operations Detection for maritime applications. J Canadian Journal of Remote Sensing 27(4): 306-319

    Google Scholar 

  71. Riveiro M, Falkman G, Ziemke T (2008) Visual analytics for the detection of anomalous maritime behavior. In: 12th International Conference Information Visualisation 2008, London, ENGLAND

    Google Scholar 

  72. Lobo V, Bacao F (2005) One dimensional Self-Organizing Maps to optimize marine patrol activities. In: Oceans 2005 Europe International Conference, Brest, FRANCE

    Google Scholar 

  73. Lobo V, Moura-Pires F (1995) Ship noise classification using Kohonen Networks. In: EANN 95, Helsinki, Finland

    Google Scholar 

  74. Lobo V, Bandeira N, Moura-Pires F (1998) Ship Recognition using Distributed Self Organizing Maps. In: EANN 98, Gibraltar

    Google Scholar 

  75. Lobo V (2002) Ship noise classification: a contrinution to prototype based classifier design, in: Departamento de Informatica, Universidade Nova de Lisboa, Lisbon

    Google Scholar 

  76. Oliveira PM, et al (2002) Detection and Classification of Underwater Transients with Data Driven Methods Based on Time-Frequency Distributions and Non-Parametric Classifiers. In: MTS/IEEE Oceans'02, Biloxi, Mississipi, USA

    Google Scholar 

  77. Labonté G (1998) A SOM neural network that reveals continuous displacement fields. In: IEEE World Congress on Computational Intelligence, Anchorage, AK, USA

    Google Scholar 

  78. Ohmia K (2008) SOM-Based particle matching algorithm for 3D particle tracking velocimetry Applied Mathematics and Computation 205(2): 890-898

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor J. A. S. Lobo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lobo, V.J.A.S. (2009). Application of Self-Organizing Maps to the Maritime Environment. In: Popovich, V.V., Claramunt, C., Schrenk, M., Korolenko, K.V. (eds) Information Fusion and Geographic Information Systems. Lecture Notes in Geoinformation and Cartography. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00304-2_2

Download citation

Publish with us

Policies and ethics