Skip to main content

Receptor-Mediated Endocytosis and Intracellular Trafficking of Lipoproteins

  • Chapter
  • First Online:
Cellular Lipid Metabolism

Abstract

Members of the low-density lipoprotein receptor (LDLR) gene family are structurally related receptors involved in receptor-mediated endocytosis and signal transduction that regulate a wide range of physiological processes. Receptor-mediated endocytosis of cholesterol-rich LDL and triglyceride-rich lipoproteins (TRL) into the liver via the LDLR and the LDLR-related protein 1 (LRP1) determine the plasma concentrations of proatherogenic lipoproteins. Recent studies indicate that LDLR-mediated internalisation of LDL and very (V)LDL engages a differentially regulated intracellular sorting machinery, suggesting that the LDLR is more than a simple constitutive endocytotic receptor. The binding and internalisation of TRL via hepatic LRP1 is even more complex. After internalisation, LDLR and LRP1 facilitate a different intracellular fate of their ligands. Whereas LDL follows the classical pathway for degradation, TRL disintegrate in late and peripheral endosomes, allowing a differential sorting of TRL components. This chapter summarises current understanding of the molecular mechanisms which are important for the internalisation and subsequent intracellular transport of LDL and TRL mediated by the LDLR and LRP1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anant S, Davidson NO. (2001) Molecular mechanisms of apolipoprotein B mRNA editing. Curr Opin Lipidol 12:159–165

    PubMed  CAS  Google Scholar 

  • Attie AD, Seidah NG. (2005) Dual regulation of the LDL receptor–some clarity and new questions. Cell Metab 1:290–292

    PubMed  CAS  Google Scholar 

  • Aulinskas T, Oram J, Bierman E, Coetzee G, Gevers W, van der Westhuyzen D. (1985) Retro-endocytosis of low density lipoprotein by cultured human skin fibroblasts. Arteriosclerosis 5:45–54

    PubMed  CAS  Google Scholar 

  • Beisiegel U, Weber W, Ihrke G, Herz J, Stanley KK. (1989) The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein. Nature 341:162–164

    PubMed  CAS  Google Scholar 

  • Bishop JR, Stanford KI, Esko JD. (2008) Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 19:307–313

    PubMed  CAS  Google Scholar 

  • Boren J, Lee I, Zhu W, Arnold K, Taylor S, Innerarity TL. (1998) Identification of the low density lipoprotein receptor-binding site in apolipoprotein B100 and the modulation of its binding activity by the carboxyl terminus in familial defective apo-B100. J Clin Invest 101:1084–1093

    PubMed  CAS  Google Scholar 

  • Borén J, Ekström U, Agren B, Nilsson-Ehle P, Innerarity TL. (2001) The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J Biol Chem 276:9214–9218

    PubMed  Google Scholar 

  • Boucher P, Gotthardt M, Li WP, Anderson RG, Herz J. (2003) LRP: role in vascular wall integrity and protection from atherosclerosis. Science 300:329–332

    PubMed  CAS  Google Scholar 

  • Brown MS, Goldstein JL. (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47

    PubMed  CAS  Google Scholar 

  • Carr BR, Simpson ER. (1981) Lipoprotein utilization and cholesterol synthesis by the human fetal adrenal gland. Endocr Rev 2:306–326

    PubMed  CAS  Google Scholar 

  • Chambenoit O, Hamon Y, Marguet D, Rigneault H, Rosseneu M, Chimini G. (2001) Specific docking of apolipoprotein A-I at the cell surface requires a functional ABCA1 transporter. J Biol Chem 276:9955–9960

    PubMed  CAS  Google Scholar 

  • Cohen JC, Kimmel M, Polanski A, Hobbs HH. (2003) Molecular mechanisms of autosomal recessive hypercholesterolemia. Curr Opin Lipidol 14:121–127

    PubMed  CAS  Google Scholar 

  • Corvera S, Graver DF, Smith RM. (1989) Insulin increases the cell surface concentration of alpha 2-macroglobulin receptors in 3T3-L1 adipocytes. Altered transit of the receptor among intracellular endocytic compartments. J Biol Chem 264:10133–10138

    PubMed  CAS  Google Scholar 

  • Dallongeville J, Lussier-Cacan S, Davignon J. (1992) Modulation of plasma triglyceride levels by apoE phenotype: a meta-analysis. J Lipid Res 33:447–454

    PubMed  CAS  Google Scholar 

  • Davignon J, Gregg RE, Sing CF. (1988) Apolipoprotein E polymorphism and atherosclerosis. Arteriosclerosis 8:1–21

    PubMed  CAS  Google Scholar 

  • de Grooth GJ, Klerkx AH, Stroes ES, Stalenhoef AF, Kastelein JJ, Kuivenhoven JA. (2004) A review of CETP and its relation to atherosclerosis. J Lipid Res 45:1967–1974

    PubMed  CAS  Google Scholar 

  • Descamps O, Bilheimer D, Herz J. (1993) Insulin stimulates receptor-mediated uptake of apoE-enriched lipoproteins and activated alpha 2-macroglobulin in adipocytes. J Biol Chem 268:974–981

    PubMed  CAS  Google Scholar 

  • Dichek HL, Brecht W, Fan J, Ji Z-S, McCormick SPA, Akeefe H, Conzo L, Sanan DA, Weisgraber KH, Young SG, Taylor JM, Mahley RW. (1998) Overexpression of hepatic lipase in transgenic mice decreases apolipoprotein B-containing and high density lipoproteins. J Biol Chem 273:1896–1903

    PubMed  CAS  Google Scholar 

  • Dichek HL, Qian K, Agrawal N. (2004) The bridging function of hepatic lipase clears plasma cholesterol in LDL receptor-deficient “apoB-48-only” and “apoB-100-only” mice. J Lipid Res 45:551–560

    PubMed  CAS  Google Scholar 

  • Dong LM, Wilson C, Wardell MR, Simmons T, Mahley RW, Weisgraber KH, Agard DA. (1994) Human apolipoprotein E. Role of arginine 61 in mediating the lipoprotein preferences of the E3 and E4 isoforms. J Biol Chem 269:22358–22365

    PubMed  CAS  Google Scholar 

  • Eden ER, Patel DD, Sun XM, Burden JJ, Themis M, Edwards M, Lee P, Neuwirth C, Naoumova RP, Soutar AK. (2002) Restoration of LDL receptor function in cells from patients with autosomal recessive hypercholesterolemia by retroviral expression of ARH1. J Clin Invest 110:1695–1702

    PubMed  CAS  Google Scholar 

  • Edge S, Hoeg J, Triche T, Schneider P, Brewer H Jr. (1986) Cultured human hepatocytes. Evidence for metabolism of low density lipoproteins by a pathway independent of the classical low density lipoprotein receptor. J Biol Chem 261:3800–3806

    PubMed  CAS  Google Scholar 

  • Espirito Santo SM, Pires NM, Boesten LS, Gerritsen G, Bovenschen N, van Dijk KW, Jukema JW, Princen HM, Bensadoun A, Li WP, Herz J, Havekes LM, van Vlijmen BJ. (2004) Hepatic low-density lipoprotein receptor-related protein deficiency in mice increases atherosclerosis independent of plasma cholesterol. Blood 103:3777–3782

    PubMed  Google Scholar 

  • Farkas MH, Swift LL, Hasty AH, Linton MF, Fazio S. (2003) The recycling of apolipoprotein E in primary cultures of mouse hepatocytes. Evidence for a physiologic connection to high density lipoprotein metabolism. J Biol Chem 278:9412–9417

    PubMed  CAS  Google Scholar 

  • Farkas MH, Weisgraber KH, Shepherd VL, Linton MF, Fazio S, Swift LL. (2004) The recycling of apolipoprotein E and its amino-terminal 22 kDa fragment: evidence for multiple redundant pathways. J Lipid Res 45:1546–1554

    PubMed  CAS  Google Scholar 

  • Fazio S, Linton MF, Hasty AH, Swift LL. (1999) Recycling of apolipoprotein E in mouse liver. J Biol Chem 274:8247–8253

    PubMed  CAS  Google Scholar 

  • Gent J, Braakman I. (2004) Low-density lipoprotein receptor structure and folding. Cell Mol Life Sci 61:2461–2470

    PubMed  CAS  Google Scholar 

  • Gillian-Daniel DL, Bates PW, Tebon A, Attie AD. (2002) Endoplasmic reticulum localization of the low density lipoprotein receptor mediates presecretory degradation of apolipoprotein B. Proc Natl Acad Sci USA 99:4337–4342

    PubMed  CAS  Google Scholar 

  • Goldberg IJ. (1996) Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res 37:693–707

    PubMed  CAS  Google Scholar 

  • Goldstein J, Brown M, Anderson R, Russell D, Schneider W. (1985) Receptor-mediated endocytosis: concepts emerging from the LDL receptor system. Annu Rev Cell Biol 1:1–39

    PubMed  CAS  Google Scholar 

  • Gonzalez-Navarro H, Nong Z, Amar MJ, Shamburek RD, Najib-Fruchart J, Paigen BJ, Brewer HB Jr, Santamarina-Fojo S. (2004) The ligand-binding function of hepatic lipase modulates the development of atherosclerosis in transgenic mice. J Biol Chem 279:45312–45321

    PubMed  CAS  Google Scholar 

  • Gotthardt M, Trommsdorff M, Nevitt MF, Shelton J, Richardson JA, Stockinger W, Nimpf J, Herz J. (2000) Interactions of the low density lipoprotein receptor gene family with cytosolic adaptor and scaffold proteins suggest diverse biological functions in cellular communication and signal transduction. J Biol Chem 275:25616–25624

    PubMed  CAS  Google Scholar 

  • Goudriaan JR, Espirito Santo SM, Voshol PJ, Teusink B, van Dijk KW, van Vlijmen BJ, Romijn JA, Havekes LM, Rensen PC. (2004) The VLDL receptor plays a major role in chylomicron metabolism by enhancing LPL-mediated triglyceride hydrolysis. J Lipid Res 45:1475–1481

    PubMed  CAS  Google Scholar 

  • Greenspan P, St Clair R. (1984) Retroendocytosis of low density lipoprotein. Effect of lysosomal inhibitors on the release of undegraded 125I-low density lipoprotein of altered composition from skin fibroblasts in culture. J Biol Chem 259:1703–1713

    PubMed  CAS  Google Scholar 

  • Harasaki K, Lubben NB, Harbour M, Taylor MJ, Robinson MS. (2005) Traffic 6:1014–1026

    Google Scholar 

  • Hasty AH, Plummer MR, Weisgraber KH, Linton MF, Fazio S, Swift LL. (2005) The recycling of apolipoprotein E in macrophages: Influence of HDL and apolipoprotein AI. J Lipid Res 46:1433–1439

    PubMed  CAS  Google Scholar 

  • Havel RJ, Hamilton RL. (2004) Hepatic catabolism of remnant lipoproteins: where the action is. Arterioscler Thromb Vasc Biol 24:213–215

    PubMed  CAS  Google Scholar 

  • He G, Gupta S, Yi M, Michaely P, Hobbs HH, Cohen JC. (2002) ARH is a modular adaptor protein that interacts with the LDL receptor, clathrin, and AP-2. J Biol Chem 277:44044–44049

    PubMed  CAS  Google Scholar 

  • Heeren J, Grewal T, Jackle S, Beisiegel U. (2001) Recycling of apolipoprotein E and lipoprotein lipase through endosomal compartments in vivo. J Biol Chem 276:42333–42338

    PubMed  CAS  Google Scholar 

  • Heeren J, Weber W, Beisiegel U. (1999) Intracellular processing of endocytosed triglyceride-rich lipoproteins comprises both recycling and degradation. J Cell Sci 112:349–359

    PubMed  CAS  Google Scholar 

  • Heeren J, Niemeier A, Merkel M, Beisiegel U. (2002) Endothelial-derived lipoprotein lipase is bound to postprandial triglyceride-rich lipoproteins and mediates their hepatic clearance in vivo. J Mol Med 80:576–584

    PubMed  CAS  Google Scholar 

  • Heeren J, Grewal T, Laatsch A, Rottke D, Rinninger F, Enrich C, Beisiegel U. (2003) Recycling of apoprotein E is associated with cholesterol efflux and high density lipoprotein internalization. J Biol Chem 278:14370–14378

    PubMed  CAS  Google Scholar 

  • Heeren J, Grewal T, Laatsch A, Becker N, Rinninger F, Rye KA, Beisiegel U. (2004) Impaired recycling of apolipoprotein E4 is associated with intracellular cholesterol accumulation. J Biol Chem 279:55483–55492

    PubMed  CAS  Google Scholar 

  • Heeren J, Beisiegel U, Grewal T. (2006) Apolipoprotein E recycling: implications for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 26:442–448

    PubMed  CAS  Google Scholar 

  • Herz J, Strickland DK. (2001) LRP: a multifunctional scavenger and signaling receptor. J Clin Invest 108:779–784

    PubMed  CAS  Google Scholar 

  • Herz J, Kowal RC, Goldstein JL, Brown MS. (1990) Proteolytic processing of the 600 kd low density lipoprotein receptor-related protein (LRP) occurs in a trans-Golgi compartment. EMBO J 9:1769–1776

    PubMed  CAS  Google Scholar 

  • Hofmann SM, Zhou L, Perez-Tilve D, Greer T, Grant E, Wancata L, Thomas A, Pfluger PT, Basford JE, Gilham D, Herz J, Tschöp MH, Hui DY. (2007) Adipocyte LDL receptor-related protein-1 expression modulates postprandial lipid transport and glucose homeostasis in mice. J Clin Invest 117:3271–3282

    PubMed  CAS  Google Scholar 

  • Horton JD, Cohen JC, Hobbs HH. (2007) Molecular biology of PCSK9: its role in LDL metabolism. Trends Biochem Sci 32:71–77

    PubMed  CAS  Google Scholar 

  • Illingworth DR, Alam NA, Lindsey S. (1984) Adrenocortical response to adrenocorticotropin in heterozygous familial hypercholesterolemia. J Clin Endocrinol Metab 58:206–211

    PubMed  CAS  Google Scholar 

  • Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS. (1994) The two-receptor model of lipoprotein clearance: tests of the hypothesis in “knockout” mice lacking the low density lipoprotein receptor, apolipoprotein E, or both proteins. Proc Natl Acad Sci USA 91:4431–4435

    PubMed  CAS  Google Scholar 

  • Hussain MM, Mahley RW, Boyles JK, Lindquist PA, Brecht WJ, Innerarity TL. (1989) Chylomicron metabolism. Chylomicron uptake by bone marrow in different animal species. J Biol Chem 264:17931–17938

    PubMed  CAS  Google Scholar 

  • Huuskonen J, Olkkonen VM, Jauhiainen M, Ehnholm C. (2001) The impact of phospholipid transfer protein (PLTP) on HDL metabolism. Atherosclerosis 155:269–281

    PubMed  CAS  Google Scholar 

  • Jeon H, Meng W, Takagi J, Eck MJ, Springer TA, Blacklow SC. (2001) Implications for familial hypercholesterolemia from the structure of the LDL receptor YWTD-EGF domain pair. Nat Struct Biol 8:499–504

    PubMed  CAS  Google Scholar 

  • Jones C, Garuti R, Michaely P, Li WP, Maeda N, Cohen JC, Herz J, Hobbs HH. (2007) Disruption of LDL but not VLDL clearance in autosomal recessive hypercholesterolemia. J Clin Invest 117:165–174

    PubMed  CAS  Google Scholar 

  • Kane JP. (1996) Structure and function of the plasma lipoproteins and their receptors. In: Fuster V, Ross R, Topol EJ (eds) Atherosclerosis and coronary disease. Lippincott–Raven, Philadelphia, pp 89–103

    Google Scholar 

  • Keyel PA, Mishra SK, Roth R, Heuser JE, Watkins SC, Traub LM. (2006) A single common portal for clathrin-mediated endocytosis of distinct cargo governed by cargo-selective adaptors. Mol Biol Cell 17:4300–4317

    PubMed  CAS  Google Scholar 

  • Kraemer FB. (2007) Adrenal cholesterol utilization. Mol Cell Endocrinol 265/266:42–45

    Google Scholar 

  • Krapp A, Ahle S, Kersting S, Hua Y, Kneser K, Nielsen M, Gliemann J, Beisiegel U. (1996) Hepatic lipase mediates the uptake of chylomicrons and beta-VLDL into cells via the LDL receptor-related protein (LRP). J Lipid Res 37:926–936

    PubMed  CAS  Google Scholar 

  • Laatsch A, Merkel M, Beisiegel U, Heeren J. (2008) Insulin stimulates the hepatic low density lipoprotein receptor-related protein 1 (LRP1) in vivo. Atherosclerosis (in press)

    Google Scholar 

  • Lakadamyali M, Rust MJ, Zhuang X. (2006) Ligands for clathrin-mediated endocytosis are differentially sorted into distinct populations of early endosomes. Cell 124:997–1009

    PubMed  CAS  Google Scholar 

  • Larsson SL, Skogsberg J, Björkegren J. (2004) The low density lipoprotein receptor prevents secretion of dense apoB100-containing lipoproteins from the liver. J Biol Chem 279:831–836

    PubMed  CAS  Google Scholar 

  • Li Y, Marzolo MP, van Kerkhof P, Strous GJ, Bu G. (2000) The YXXL motif, but not the two NPXY motifs, serves as the dominant endocytosis signal for low density lipoprotein receptor-related protein. J Biol Chem 275:17187–17194

    PubMed  CAS  Google Scholar 

  • Li Y, van Kerkhof P, Marzolo MP, Strous GJ, Bu G. (2001) Identification of a major cyclic AMP-dependent protein kinase A phosphorylation site within the cytoplasmic tail of the low-density lipoprotein receptor-related protein: implication for receptor-mediated endocytosis. Mol Cell Biol 21:1185–1195

    PubMed  CAS  Google Scholar 

  • Lillis AP, Mikhailenko I, Strickland DK. (2005) Beyond endocytosis: LRP function in cell migration, proliferation and vascular permeability. J Thromb Haemost 3:1884–1893

    PubMed  CAS  Google Scholar 

  • Liu J, Heikkilä P, Meng QH, Kahri AI, Tikkanen MJ, Voutilainen R. (2000) Expression of low and high density lipoprotein receptor genes in human adrenals. Eur J Endocrinol 142:677–682

    PubMed  CAS  Google Scholar 

  • Lombardi P, Mulder M, van der BH, Frants RR, Havekes LM. (1993) Inefficient degradation of triglyceride-rich lipoprotein by HepG2 cells is due to a retarded transport to the lysosomal compartment. J Biol Chem 268:26113–26119

    PubMed  CAS  Google Scholar 

  • Loukinova E, Ranganathan S, Kuznetsov S, Gorlatova N, Migliorini MM, Loukinov D, Ulery PG, Mikhailenko I, Lawrence DA, Strickland DK. (2002) Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF. J Biol Chem 277:15499–15506

    PubMed  CAS  Google Scholar 

  • MacArthur JM, Bishop JR, Stanford KI, Wang L, Bensadoun A, Witztum JL, Esko JD. (2007) Liver heparan sulfate proteoglycans mediate clearance of triglyceride-rich lipoproteins independently of LDL receptor family members. J Clin Invest 117:153–164

    PubMed  CAS  Google Scholar 

  • Mahley RW, Ji ZS. (1999) Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 40:1–16

    PubMed  CAS  Google Scholar 

  • Mahley RW, Huang Y, Rall SC Jr. (1999) Pathogenesis of type III hyperlipoproteinemia (dysbetalipoproteinemia). Questions, quandaries, and paradoxes. J Lipid Res 40:1933–1949

    PubMed  CAS  Google Scholar 

  • Mahley RW, Huang Y. (2007) Atherogenic remnant lipoproteins: role for proteoglycans in trapping, transferring, and internalizing. J Clin Invest 117:94–98

    PubMed  CAS  Google Scholar 

  • Mann WA, Meyer N, Berg D, Greten H, Beisiegel U. (1999) Lipoprotein lipase compensates for the defective function of apo E variants in vitro by interacting with proteoglycans and lipoprotein receptors. Atherosclerosis 145:61–69

    PubMed  CAS  Google Scholar 

  • Merkel M, Eckel RH, Goldberg IJ. (2002) Lipoprotein lipase: genetics, lipid uptake, and regulation. J Lipid Res 43:1997–2006

    PubMed  CAS  Google Scholar 

  • Michaely P, Zhao Z, Li WP, Garuti R, Huang LJ, Hobbs HH, Cohen JC. (2007) Identification of a VLDL-induced, FDNPVY-independent internalization mechanism for the LDLR. EMBO J 26:3273–3282

    PubMed  CAS  Google Scholar 

  • Mishra SK, Watkins SC, Traub LM. (2002) The autosomal recessive hypercholesterolemia. (ARH) protein interfaces directly with the clathrin-coat machinery. Proc Natl Acad Sci USA 99:16099–16104

    PubMed  CAS  Google Scholar 

  • Myers JN, Tabas I, Jones NL, Maxfield FR. (1993) Beta-very low density lipoprotein is sequestered in surface-connected tubules in mouse peritoneal macrophages. J Cell Biol 123:1389–1402

    PubMed  CAS  Google Scholar 

  • Niemeier A, Gàfvels M, Heeren J, Meyer N, Angelin B, Beisiegel U. (1996) VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res 37:1733–1742

    PubMed  CAS  Google Scholar 

  • Niemeier A, Kassem M, Toedter K, Wendt D, Ruether W, Beisiegel U, et al. (2005) Expression of LRP1 by human osteoblasts: a mechanism for the delivery of lipoproteins and vitamin K1 to bone. J Bone Miner Res 20:283–293

    PubMed  CAS  Google Scholar 

  • Niemeier A, Niedzielska D, Secer R, Schilling A, Merkel M, Enrich C, Rensen PCN, Heeren J. (2008) Uptake of postprandial lipoproteins into bone in vivo: Impact on Osteoblast Function. Bone (in press)

    Google Scholar 

  • Prawitt J, Niemeier A, Kassem M, Beisiegel U, Heeren J. (2008) Characterization of lipid metabolism in insulin-sensitive adipocytes differentiated from immortalized human mesenchymal stem cells. Exp Cell Res 314:814–824

    PubMed  CAS  Google Scholar 

  • Rader DJ, Cohen J, Hobbs HH. (2003) Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J Clin Invest 111:1795–1803

    PubMed  CAS  Google Scholar 

  • Ranganathan S, Liu CX, Migliorini MM, Von Arnim CA, Peltan ID, Mikhailenko I, Hyman BT, Strickland DK. (2004) Serine and threonine phosphorylation of the low density lipoprotein receptor-related protein by protein kinase Calpha regulates endocytosis and association with adaptor molecules. J Biol Chem 279:40536–40544

    PubMed  CAS  Google Scholar 

  • Rellin L, Heeren J, Beisiegel U. (2008) Recycling of apolipoprotein E is not associated with cholesterol efflux in neuronal cells. Biochim Biophys Acta 1781:232–238

    PubMed  CAS  Google Scholar 

  • Rensen PC, Jong MC, van Vark LC, van der BH, Hendriks WL, Van Berkel TJ, Biessen EA, Havekes LM. (2000) Apolipoprotein E is resistant to intracellular degradation in vitro and in vivo. Evidence for retroendocytosis. J Biol Chem 275:8564–8571

    PubMed  CAS  Google Scholar 

  • Roebroek AJ, Reekmans S, Lauwers A, Feyaerts N, Smeijers L, Hartmann D. (2006) Mutant Lrp1 knock-in mice generated by recombinase-mediated cassette exchange reveal differential importance of the NPXY motifs in the intracellular domain of LRP1 for normal fetal development. Mol Cell Biol 26:605–616

    PubMed  CAS  Google Scholar 

  • Rohlmann A, Gotthardt M, Hammer RE, Herz J. (1998) Inducible inactivation of hepatic LRP gene by cre-mediated recombination confirms role of LRP in clearance of chylomicron remnants. J Clin Invest 101:689–695

    PubMed  CAS  Google Scholar 

  • Roses AD. (1996) Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Annu Rev Med 47:387–400

    PubMed  CAS  Google Scholar 

  • Rubino M, Miaczynska M, Lippe R, Zerial M. (2000) Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J Biol Chem 275:3745–3748

    PubMed  CAS  Google Scholar 

  • Saito H, Lund-Katz S, Phillips MC. (2004) Contributions of domain structure and lipid interaction to the functionality of exchangeable human apolipoproteins. Prog Lipid Res 43:350–380

    PubMed  CAS  Google Scholar 

  • Schilling AF, Schinke T, Munch C, Gebauer M, Niemeier A, Priemel M et al. (2005) Increased bone formation in mice lacking apolipoprotein E. J Bone Miner Res 20:274–282

    PubMed  CAS  Google Scholar 

  • Schneider WJ, Kovanen PT, Brown MS, Goldstein JL, Utermann G, Weber W, Havel RJ, Kotite L, Kane JP, Innerarity TL, Mahley RW. (1981) Familial dysbetalipoproteinemia. Abnormal binding of mutant apoprotein E to low density lipoprotein receptors of human fibroblasts and membranes from liver and adrenal of rats, rabbits, and cows. J Clin Invest 68:1075–1085

    PubMed  CAS  Google Scholar 

  • Sehayek, E, Lewin-Velvert, U, Chajek-Shaul, T, Eisenberg, S. (1991) Lipolysis exposes unreactive endogenous apolipoprotein E-3 in human and rat plasma very low density lipoprotein. J Clin Invest 88: 553–560

    PubMed  CAS  Google Scholar 

  • Shelness GS, Sellers JA. (2001) Very-low-density lipoprotein assembly and secretion. Curr Opin Lipidol 12:151–157

    PubMed  CAS  Google Scholar 

  • Smith JD, Waelde C, Horwitz A, Zheng P. (2002) Evaluation of the role of phosphatidylserine translocase activity in ABCA1-mediated lipid efflux. J Biol Chem 277:17797–17803

    PubMed  CAS  Google Scholar 

  • Stolt PC, Bock HH. (2006) Modulation of lipoprotein receptor functions by intracellular adaptor proteins. Cell Signal 18:1560–1571

    PubMed  CAS  Google Scholar 

  • Südhof TC, Goldstein JL, Brown MS, Russell DW. (1985) The LDL receptor gene: a mosaic of exons shared with different proteins. Science 228:815–822

    PubMed  Google Scholar 

  • Swift LL, Farkas MH, Major AS, Valyi-Nagy K, Linton MF, Fazio S. (2001) A recycling pathway for resecretion of internalized apolipoprotein E in liver cells. J Biol Chem 276:22965–22970

    PubMed  CAS  Google Scholar 

  • Tabas I, Lim S, Xu XX, Maxfield FR. (1990) Endocytosed beta-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages. J Cell Biol 111:929–940

    PubMed  CAS  Google Scholar 

  • Tamaki C, Ohtsuki S, Terasaki T. (2007) Mol Pharmacol 72:850–855

    PubMed  CAS  Google Scholar 

  • Takahashi S, Sakai J, Fujino T, Hattori H, Zenimaru Y, Suzuki J, Miyamori I, Yamamoto TT. (2004) The very low-density lipoprotein. (VLDL) receptor: characterization and functions as a peripheral lipoprotein receptor. J Atheroscler Thromb 11:200–208

    PubMed  CAS  Google Scholar 

  • Twisk J, Gillian-Daniel DL, Tebon A, Wang L, Barrett PH, Attie AD. (2000) The role of the LDL receptor in apolipoprotein B secretion. J Clin Invest 105:521–532

    PubMed  CAS  Google Scholar 

  • Uhlik MT, Temple B, Bencharit S, Kimple AJ, Siderovski DP, Johnson GL. (2005) Structural and evolutionary division of phosphotyrosine binding. (PTB) domains. J Mol Biol 345:1–20

    PubMed  CAS  Google Scholar 

  • van Kerkhof P, Lee J, McCormick L, Tetrault E, Lu W, Schoenfish M, Oorschot V, Strous GJ, Klumperman J, Bu G. (2005) Sorting nexin 17 facilitates LRP recycling in the early endosome. EMBO J 24:2851–2861

    PubMed  CAS  Google Scholar 

  • Vance J. (2002) Assembly and secretion of lipoproteins. In: Vance D, Vance J. (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam, pp 505–526

    Google Scholar 

  • Verges M, Bensadoun A, Herz J, Belcher JD, Havel RJ. (2004) Endocytosis of hepatic lipase and lipoprotein lipase into rat liver hepatocytes in vivo is mediated by the low density lipoprotein receptor-related protein. J Biol Chem 279:9030–9036

    PubMed  CAS  Google Scholar 

  • von Eckardstein A, Nofer JR, Assmann G. (2001) High density lipoproteins and arteriosclerosis. Role of cholesterol efflux and reverse cholesterol transport. Arterioscler Thromb Vasc Biol 21:13–27

    PubMed  CAS  Google Scholar 

  • Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA. (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252:1817–1822

    PubMed  CAS  Google Scholar 

  • Wyne KL, Pathak K, Seabra MC, Hobbs HH. (1996) Expression of the VLDL receptor in endothelial cells. Arterioscler Thromb Vasc Biol 16:407–415

    PubMed  CAS  Google Scholar 

  • Xiang SQ, Cianflone K, Kalant D, Sniderman AD. (1999) Differential binding of triglyceride-rich lipoproteins to lipoprotein lipase. J Lipid Res 40:1655–1663

    PubMed  CAS  Google Scholar 

  • Zaiou M, Arnold KS, Newhouse YM, Innerarity TL, Weisgraber KH, Segall ML, Phillips MC, Lund-Katz S. (2000) Apolipoprotein E–low density lipoprotein receptor interaction. Influences of basic residue and amphipathic alpha-helix organization in the ligand. J Lipid Res 41:1087–1095

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerg Heeren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heeren, J., Beisiegel, U. (2009). Receptor-Mediated Endocytosis and Intracellular Trafficking of Lipoproteins. In: Ehnholm, C. (eds) Cellular Lipid Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00300-4_8

Download citation

Publish with us

Policies and ethics