Skip to main content

Role of the Endothelium in Lipoprotein Metabolism

  • Chapter
  • First Online:
Cellular Lipid Metabolism

Abstract

For a long time the endothelium was considered as a passive exchange barrier of lipoproteins between plasma and extravascular tissues. During the past two decades many data from clinical studies, cell culture, and animal experiments have shown that endothelial cells are a target of physiological and pathological actions of lipoproteins: Whereas lysosphingolipids and apolipoprotein (apo)A-I in native high-density lipoproteins (HDL) exert protective effects on the integrity and function of endothelial cells, modified low-density lipoproteins (LDL) and remnants of lipoproteins tend to disturb endothelial function. One central function of the endothelium is the control of protein trafficking between intravascular and extravascular compartments. Both LDL and HDL can pass the intact endothelium through transcytosis by processes which involve caveolin-1 and the LDL-receptor (for LDL) or ATP-binding cassette (ABC) transporters and scavenger receptor (SR)-BI for apoA-I and HDL, respectively. Finally the endothelium has evolved as a regulator of lipoprotein metabolism: By expressing or presenting lipases [lipoprotein lipase (LPL), hepatic lipase (HL), endothelial lipase (EL)] as well as LPL-receptors (glycerophosphatidyl inositol anchored HDL binding protein 1; GPIHBP1) the endothelium contributes to the remodelling of all lipoprotein classes. Selective conditional knock-outs of widely expressed genes like peroxisome proliferator agent receptor gamma (PPARγ) in mice are starting to reveal additional specific effects of the endothelium on lipid and lipoprotein metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ansell BJ, Fonarow GC, Fogelman AM (2007) The paradox of dysfunctional high-density lipoprotein. Curr Opin Lipidol 18:427– 434

    PubMed  CAS  Google Scholar 

  • Argraves KM, Argraves WS (2007) HDL serves as a S1P signaling platform mediating a multitude of cardiovascular effects. J Lipid Res 48:2325–2333

    PubMed  CAS  Google Scholar 

  • Argraves KM, Gazzolo PJ, Groh EM, Wilkerson BA, Matsuura BS, Twal WO, Hammad SM, Argraves WS (2008) High density lipoprotein-associated sphingosine 1-phosphate promotes endothelial barrier function. J. Biol Chem 283:25074–25081

    PubMed  CAS  Google Scholar 

  • Badellino KO, Rader DJ (2004) The role of endothelial lipase in high-density lipoprotein metabolism. Curr Opin Cardiol 19:392–395

    PubMed  Google Scholar 

  • Badellino KO, Wolfe ML, Reilly MP, Rader DJ (2006) Endothelial lipase concentrations are increased in metabolic syndrome and associated with coronary atherosclerosis. PLoS Med 3:e22

    PubMed  Google Scholar 

  • Bai H, Liu BW, Deng ZY, Shen T, Fang DZ, Zhao YH, Liu Y (2006) Plasma very-low-density lipoprotein, low-density lipoprotein, and high-density lipoprotein oxidative modification induces procoagulant profiles in endogenous hypertriglyceridemia. Free Radic Biol Med 40:1796–1803

    PubMed  CAS  Google Scholar 

  • Baker PW, Rye KA, Gamble JR, Vadas MA, Barter PJ (2000) Phospholipid composition of reconstituted high density lipoproteins influences their ability to inhibit endothelial cell adhesion molecule expression. J Lipid Res 41:1261–1267

    PubMed  CAS  Google Scholar 

  • Balazs Z, Panzenboeck U, Hammer A, Sovic A, Quehenberger O, Malle E, Sattler W (2004) Uptake and transport of high-density lipoprotein (HDL) and HDL-associated alpha-tocopherol by an in vitro blood-brain barrier model. J Neurochem 89:939–950

    PubMed  CAS  Google Scholar 

  • Barrans A, Collet X, Barbaras R, Jaspard B, Manent J, Vieu C, Chap H, Perret B (1994) Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem 269:11572–11577

    PubMed  CAS  Google Scholar 

  • Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding ZM, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan RO, Fong LG, Bensadoun A, Young SG (2007) Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 5:279–291

    PubMed  CAS  Google Scholar 

  • Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG (2008) GPIHBP1 – a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res (in press)

    Google Scholar 

  • Bishop JR, Stanford KI, Esko JD (2008) Heparan sulfate proteoglycans and triglyceride-rich lipoprotein metabolism. Curr Opin Lipidol 19:307–313

    PubMed  CAS  Google Scholar 

  • Bisoendial RJ, Hovingh GK, Levels JH, Lerch PG, Andresen I, Hayden MR, Kastelein JJ, Stroes ES (2003) Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 107:2944–2948

    PubMed  Google Scholar 

  • Born GV, Medina R, Shafi S, Cardona-Sanclemente LE (2003) Factors influencing the uptake of atherogenic plasma proteins by artery walls. Biorheology 40:13–22

    PubMed  CAS  Google Scholar 

  • Brunner H, Cockcroft JR, Deanfield J, Donald A, Ferrannini E, Halcox J, Kiowski W, Lüscher TF, Mancia G, Natali A, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Spieker LE, Taddei S, Webb DJ (2005) Working group on endothelins and endothelial factors of the european society of hypertension. Endothelial function and dysfunction. Part II: association with cardiovascular risk factors and diseases. A statement by the working group on endothelins and endothelial factors of the european society of hypertension. J Hypertens 23:233–246

    PubMed  CAS  Google Scholar 

  • Cavelier C, Rohrer L, von Eckardstein A (2006) ATP-binding cassette transporter A1 modulates apolipoprotein A-I transcytosis through aortic endothelial cells. Circ Res 99:1060–1066

    PubMed  CAS  Google Scholar 

  • Chao WT, Fan SS, Chen JK, Yang VC (2003) Visualizing caveolin-1 and HDL in cholesterol-loaded aortic endothelial cells. J Lipid Res 44:1094–1099

    PubMed  CAS  Google Scholar 

  • Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109[Suppl 1]:III27–32

    PubMed  Google Scholar 

  • Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and dysfunction: testing and clinical relevance. Circulation 115:1285–1295

    PubMed  Google Scholar 

  • Dehouck B, Fenart L, Dehouck MP, Pierce A, Torpier G, Cecchelli R (1997) A new function for the LDL receptor: transcytosis of LDL across the blood–brain barrier. J Cell Biol 138:877–889

    PubMed  CAS  Google Scholar 

  • Dunn S, Vohra RS, Murphy JE, Homer-Vanniasinkam S, Walker JH, Ponnambalam S (2008) The lectin-like oxidized low-density-lipoprotein receptor: a pro-inflammatory factor in vascular disease. Biochem J 409:349–355

    PubMed  CAS  Google Scholar 

  • Evans M, Berhane Y, Botham KM, Elliott J, Wheeler-Jones CP (2004) Chylomicron-remnant-like particles modify production of vasoactive mediators by endothelial cells. Biochem Soc Trans 32:110–112

    PubMed  CAS  Google Scholar 

  • Félétou M, Vanhoutte PM (2007) Endothelium-dependent hyperpolarizations: past beliefs and present facts. Ann Med 39:495–516

    PubMed  Google Scholar 

  • Feng Y, Jacobs F, Van Craeyveld E, Brunaud C, Snoeys J, Tjwa M, Van Linthout S, De Geest B (2008a) Human ApoA-I transfer attenuates transplant arteriosclerosis via enhanced incorporation of bone marrow-derived endothelial progenitor cells. Arterioscler Thromb Vasc Biol 28:278–283

    PubMed  CAS  Google Scholar 

  • Feng Y, van Eck M, Van Craeyveld E, Jacobs F, Carlier V, Van Linthout S, Erdel M, Tjwa M, De Geest B (2009) Critical role of scavenger receptor-BI expressing bone marrow-derived endothelial progenitor cells in the attenuation of allograft vasculopathy after human apo A-I transfer. Blood 113:755–764

    Google Scholar 

  • Forte TM, Shu X, Ryan RO (2008) The ins (cell) and outs (plasma) of apolipoprotein A-V. J Lipid Res (in press)

    Google Scholar 

  • Frank PG, Lee H, Park DS, Tandon NN, Scherer PE, Lisanti MP (2004) Genetic ablation of caveolin-1 confers protection against atherosclerosis. Arterioscler Thromb Vasc Biol 24:98–105

    PubMed  CAS  Google Scholar 

  • Frank PG, Pavlides S, Cheung MW, Daumer K, Lisanti MP (2008) Role of caveolin-1 in the regulation of lipoprotein metabolism. Am J Physiol Cell Physiol 295:C242–C248

    Google Scholar 

  • Frank PG, Pavlides S, Lisanti MP (2009) Caveolae and transcytosis in endothelial cells: role in atherosclerosis. Cell Tissue Res 335:41–47

    PubMed  CAS  Google Scholar 

  • Gauster M, Oskolkova OV, Innerlohinger J, Glatter O, Knipping G, Frank S (2004) Endothelial lipase-modified high-density lipoprotein exhibits diminished ability to mediate SR-BI (scavenger receptor B type I)-dependent free-cholesterol efflux. Biochem J 382:75–82

    PubMed  CAS  Google Scholar 

  • Gleissner CA, Leitinger N, Ley K (2007) Effects of native and modified low-density lipoproteins on monocyte recruitment in atherosclerosis. Hypertension 50:276–283

    PubMed  CAS  Google Scholar 

  • Goti D, Balazs Z, Panzenboeck U, Hrzenjak A, Reicher H, Wagner E, Zechner R, Malle E, Sattler W (2002) Effects of lipoprotein lipase on uptake and transcytosis of low density lipoprotein (LDL) and LDL-associated alpha-tocopherol in a porcine in vitro blood–brain barrier model. J Biol Chem 277:28537–28544

    PubMed  CAS  Google Scholar 

  • Guendouzi K, Collet X, Perret B, Chap H, Barbaras R (1998) Remnant high density lipoprotein2 particles produced by hepatic lipase display high-affinity binding and increased endocytosis into a human hepatoma cell line (HEPG2). Biochemistry 37:14974–14980

    PubMed  CAS  Google Scholar 

  • Hasham SN, Pillarisetti S (2006) Vascular lipases, inflammation and atherosclerosis. Clin Chim Acta 372:179–183

    PubMed  CAS  Google Scholar 

  • Hu G, Minshall RD (2009) Regulation of transendothelial permeability by Src kinase. Microvasc Res 77:21–25

    Google Scholar 

  • Ishida T, Choi S, Kundu RK, et al (2003) Endothelial lipase is a major determinant of HDL level. J Clin Invest 111:347–355

    PubMed  CAS  Google Scholar 

  • Ishida T, Choi SY, Kundu RK, Spin J, Yamashita T, Hirata K, Kojima Y, Yokoyama M, Cooper AD, Quertermous T (2004) Endothelial lipase modulates susceptibility to atherosclerosis in apolipoprotein-E-deficient mice. J Biol Chem 279:45085–45092

    PubMed  CAS  Google Scholar 

  • Jaye M, Krawiec J (2004) Endothelial lipase and HDL metabolism. Curr Opin Lipidol 15:183–189

    PubMed  CAS  Google Scholar 

  • Jensen JS, Feldt-Rasmussen B, Jensen KS, Clausen P, Scharling H, Nordestgaard BG (2004) Transendothelial lipoprotein exchange and microalbuminuria. Cardiovasc Res 63:149–154

    PubMed  CAS  Google Scholar 

  • Kanda T, Brown JD, Orasanu G, Vogel S, Gonzalez FJ, Sartoretto J, Michel T, Plutzky J (2009) PPARgamma in the endothelium regulates metabolic responses to high-fat diet in mice. J Clin Invest. 119:110–124

    Google Scholar 

  • Kawakami A, Tanaka A, Nakajima K, Shimokado K, Yoshida M (2002) Atorvastatin attenuates remnant lipoprotein-induced monocyte adhesion to vascular endothelium under flow conditions. Circ Res 91:263–271

    PubMed  CAS  Google Scholar 

  • Kimura T, Sato K, Kuwabara A, Tomura H, Ishiwara M, Kobayashi I, Ui M, Okajima F (2001) Sphingosine 1-phosphate may be a major component of plasma lipoproteins responsible for the cytoprotective actions in human umbilical vein endothelial cells. J Biol Chem 276:31780–31785

    PubMed  CAS  Google Scholar 

  • Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, Murakami M, Okajima F (2003) High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol 23:1283–1288

    PubMed  CAS  Google Scholar 

  • Kimura T, Tomura H, Mogi C, Kuwabara A, Damirin A, Ishizuka T, Sekiguchi A, Ishiwara M, Im DS, Sato K, Murakami M, Okajima F (2006) Role of scavenger receptor class B type I and sphingosine 1-phosphate receptors in high density lipoprotein-induced inhibition of adhesion molecule expression in endothelial cells. J Biol Chem 281:37457–37467

    PubMed  CAS  Google Scholar 

  • Ko KW, Paul A, Ma K, Li L, Chan L (2005) Endothelial lipase modulates HDL but has no effect on atherosclerosis development in apoE–/– and LDLR–/– mice. J Lipid Res 46:2586–2594

    PubMed  CAS  Google Scholar 

  • Komarova YA, Mehta D, Malik AB (2007) Dual regulation of endothelial junctional permeability. Sci STKE 2007:re8

    PubMed  Google Scholar 

  • Kornerup K, Nordestgaard BG, Feldt-Rasmussen B, Borch-Johnsen K, Jensen KS, Jensen JS (2003) Increased transvascular low density lipoprotein transport in insulin dependent diabetes: a mechanistic model for development of atherosclerosis. Atherosclerosis 170:163–168

    PubMed  CAS  Google Scholar 

  • Kornerup K, Nordestgaard BG, Jensen TK, Feldt-Rasmussen B, Eiberg JP, Jensen KS, Jensen JS (2004) Transendothelial exchange of low-density lipoprotein is unaffected by the presence of severe atherosclerosis. Cardiovasc Res 64:337–345

    PubMed  CAS  Google Scholar 

  • Kratzer I, Wernig K, Panzenboeck U, Bernhart E, Reicher H, Wronski R, Windisch M, Hammer A, Malle E, Zimmer A, Sattler W (2007) Apolipoprotein A-I coating of protamine-oligonucleotide nanoparticles increases particle uptake and transcytosis in an in vitro model of the blood–brain barrier. J Control Release 117:301–311

    PubMed  CAS  Google Scholar 

  • Lamarche B, Paradis ME (2007) Endothelial lipase and the metabolic syndrome. Curr Opin Lipidol 18:298–303

    PubMed  CAS  Google Scholar 

  • Li D, Mehta JL (2000) Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol 20:1116–1122

    PubMed  CAS  Google Scholar 

  • Mehta D, Malik AB (2006) Signaling mechanisms regulating endothelial permeability. Physiol Rev 86:279–367

    PubMed  CAS  Google Scholar 

  • Mineo C, Shaul PW (2007) Role of high-density lipoprotein and scavenger receptor B type I in the promotion of endothelial repair. Trends Cardiovasc Med 17:156–161

    PubMed  CAS  Google Scholar 

  • Mineo C, Yuhanna IS, Quon MJ, Shaul PW (2003) High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem 278:9142–9149

    PubMed  CAS  Google Scholar 

  • Mineo C, Deguchi H, Griffin JH, Shaul PW (2006) Endothelial and antithrombotic actions of HDL. Circ Res 98:1352–1364

    PubMed  CAS  Google Scholar 

  • Miura S, Fujino M, Matsuo Y, Kawamura A, Tanigawa H, Nishikawa H, Saku K (2003a) High density lipoprotein-induced angiogenesis requires the activation of Ras/MAP kinase in human coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 23:802–808

    PubMed  CAS  Google Scholar 

  • Miura S, Tanigawa H, Matsuo Y, Fujino M, Kawamura A, Saku K (2003b) Ras/Raf1-dependent signal in sphingosine-1-phosphate-induced tube formation in human coronary artery endothelial cells. Biochem Biophys Res Commun 306:924–929

    PubMed  CAS  Google Scholar 

  • Nofer JR, Assmann G (2005) Atheroprotective effects of high-density lipoprotein-associated lysosphingolipids. Trends Cardiovasc Med 15:265–271

    PubMed  CAS  Google Scholar 

  • Nofer JR, Fobker M, Höbbel G, Voss R, Wolinska I, Tepel M, Zidek W, Junker R, Seedorf U, von Eckardstein A, Assmann G, Walter M (2000) Activation of phosphatidylinositol-specific phospholipase C by HDL-associated lysosphingolipid. Involvement in mitogenesis but not in cholesterol efflux. Biochemistry 39:15199–15207

    PubMed  CAS  Google Scholar 

  • Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G (2001) Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem 276:34480–34485

    PubMed  CAS  Google Scholar 

  • Nofer JR, Geigenmüller S, Göpfert C, Assmann G, Buddecke E, Schmidt A (2003) High density lipoprotein-associated lysosphingolipids reduce E-selectin expression in human endothelial cells. Biochem Biophys Res Commun 310:98–103

    PubMed  CAS  Google Scholar 

  • Nofer JR, van der Giet M, Tölle M, Wolinska I, von Wnuck Lipinski K, Baba HA,Tietge UJ, Gödecke A, Ishii I, Kleuser B, Schäfers M, Fobker M, Zidek W, Assmann G, Chun J, Levkau B (2004) HDL induces NO-dependent vasorelaxation via the lysophospholipid receptor S1P3. J Clin Invest 113:569–581

    PubMed  CAS  Google Scholar 

  • Noor R, Shuaib U, Wang CX, Todd K, Ghani U, Schwindt B, Shuaib A (2007) High-density lipoprotein cholesterol regulates endothelial progenitor cells by increasing eNOS and preventing apoptosis. Atherosclerosis 192:92–99

    PubMed  CAS  Google Scholar 

  • Norata GD, Catapano AL (2005) Molecular mechanisms responsible for the antiinflammatory and protective effect of HDL on the endothelium. Vasc Health Risk Manag 1:119–129

    PubMed  CAS  Google Scholar 

  • Norata GD, Pirillo A, Callegari E, Hamsten A, Catapano AL, Eriksson P (2003) Gene expression and intracellular pathways involved in endothelial dysfunction induced by VLDL and oxidised VLDL. Cardiovasc Res 59:169–180

    PubMed  CAS  Google Scholar 

  • Norata GD, Callegari E, Inoue H, Catapano AL (2004) HDL3 induces cyclooxygenase-2 expression and prostacyclin release in human endothelial cells via a p38 MAPK/CRE-dependent pathway: effects on COX-2/PGI-synthase coupling. Arterioscler Thromb Vasc Biol 24:871–877

    PubMed  CAS  Google Scholar 

  • Nordestgaard BG, Wootton R, Lewis B (1995) Selective retention of VLDL, IDL, and LDL in the arterial intima of genetically hyperlipidemic rabbits in vivo. Molecular size as a determinant of fractional loss from the intima-inner media. Arterioscler Thromb Vasc Biol 15:534–542

    PubMed  CAS  Google Scholar 

  • Obunike JC, Lutz EP, Li Z, Paka L, Katopodis T, Strickland DK, Kozarsky KF, Pillarisetti S, Goldberg IJ (2001) Transcytosis of lipoprotein lipase across cultured endothelial cells requires both heparan sulfate proteoglycans and the very low density lipoprotein receptor. J Biol Chem 276:8934–8941

    PubMed  CAS  Google Scholar 

  • Oravec S, Demuth K, Myara I, Hornych A (1998) The effect of high density lipoprotein subfractions on endothelial eicosanoid secretion. Thromb Res 92:65–71

    PubMed  CAS  Google Scholar 

  • Pan W, Kastin AJ, Zankel TC, van Kerkhof P, Terasaki T, Bu G (2004) Efficient transfer of receptor-associated protein (RAP) across the blood–brain barrier. J Cell Sci 117:5071–5078

    PubMed  CAS  Google Scholar 

  • Pantano C, Reynaert NL, van der Vliet A, Janssen-Heininger YM (2006) Redox-sensitive kinases of the nuclear factor-kappaB signaling pathway. Antioxid Redox Signal 8:1791–1806

    PubMed  CAS  Google Scholar 

  • Paradis ME, Badellino KO, Rader DJ, et al (2006) Visceral adiposity and endothelial lipase. J Clin Endocrinol Metab 91:3538–3543

    PubMed  CAS  Google Scholar 

  • Perret B, Mabile L, Martinez L, Tercé F, Barbaras R, Collet X (2002) Hepatic lipase: structure/function relationship, synthesis, and regulation. J Lipid Res 43:1163–1169

    PubMed  CAS  Google Scholar 

  • Petoumenos V, Nickenig G, Werner N (2008) High density lipoprotein exerts vasculoprotection via endothelial progenitor cells. J Cell Mol Med (in press)

    Google Scholar 

  • Plotnick GD, Corretti MC, Vogel RA (1997) Effect of antioxidant vitamins on the transient impairment of endothelium-dependent brachial artery vasoactivity following a single high-fat meal. JAMA 278:1682–1686

    PubMed  CAS  Google Scholar 

  • Pollin TI, Damcott CM, Shen H, Ott SH, Shelton J, Horenstein RB, Post W, McLenithan JC, Bielak LF, Peyser PA, Mitchell BD, Miller M, O’Connell JR, Shuldiner AR (2008) A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection. Science 322:1702–1705

    PubMed  CAS  Google Scholar 

  • Qiu G, Hill JS (2009) Endothelial lipase promotes apolipoprotein AI-mediated cholesterol efflux in THP-1 macrophages. Arterioscler Thromb Vasc Biol 29:84–91

    PubMed  Google Scholar 

  • Ren S, Shen GX (2000) Impact of antioxidants and HDL on glycated LDL-induced generation of fibrinolytic regulators from vascular endothelial cells. Arterioscler Thromb Vasc Biol 20:1688–1693

    PubMed  CAS  Google Scholar 

  • Rippe B, Rosengren BI, Carlsson O, Venturoli D (2002) Transendothelial transport: the vesicle controversy. J Vasc Res 39:375–390

    PubMed  CAS  Google Scholar 

  • Robbesyn F, Garcia V, Auge N, Vieira O, Frisach MF, Salvayre R, Negre-Salvayre A (2003) HDL counterbalance the proinflammatory effect of oxidized LDL by inhibiting intracellular reactive oxygen species rise, proteasome activation, and subsequent NF-kappaB activation in smooth muscle cells. FASEB J 17:743–745

    PubMed  CAS  Google Scholar 

  • Rohrer L, Cavelier C, Fuchs S, Schlüter MA, Völker W, von Eckardstein A (2006) Binding, internalization and transport of apolipoprotein A-I by vascular endothelial cells. Biochim Biophys Acta 1761:186–194

    PubMed  CAS  Google Scholar 

  • Rohrer L, Zemp M, Lorenzi I, Lehnert M, von Eckardstein A (2007) HDL transport through endothelial cells is mediated by ABCG1 and SR-BI. Arterioscler Thromb Vasc Biol 27:e36

    Google Scholar 

  • Rosenfeld SI, Packman CH, Leddy JP (1983) Inhibition of the lytic action of cell-bound terminal complement components by human high density lipoproteins and apoproteins. J Clin Invest 71:795–808

    PubMed  CAS  Google Scholar 

  • Rosenson RS, Lowe GD (1998) Effects of lipids and lipoproteins on thrombosis and rheology. Atherosclerosis 140:271–280

    PubMed  CAS  Google Scholar 

  • Rye KA, Barter PJ (2004) Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24:421–428

    PubMed  CAS  Google Scholar 

  • Schwenke DC, Carew TE (1989) Initiation of atherosclerotic lesions in cholesterol-fed rabbits. II. Selective retention of LDL vs selective increases in LDL permeability in susceptible sites of arteries. Arteriosclerosis 9:908–18

    PubMed  CAS  Google Scholar 

  • Seetharam D, Mineo C, Gormley AK, Gibson LL, Vongpatanasin W, Chambliss KL, Hahner LD, Cummings ML, Kitchens RL, Marcel YL, Rader DJ, Shaul PW (2006) High-density lipoprotein promotes endothelial cell migration and reendothelialization via scavenger receptor-B type I. Circ Res 98:63–72

    PubMed  CAS  Google Scholar 

  • Shin HK, Kim YK, Kim KY, Lee JH, Hong KW (2004) Remnant lipoprotein particles induce apoptosis in endothelial cells by NAD(P)H oxidase-mediated production of superoxide and cytokines via lectin-like oxidized low-density lipoprotein receptor-1 activation: prevention by cilostazol. Circulation 109:1022–1028

    PubMed  CAS  Google Scholar 

  • Simionescu M (2007) Implications of early structural–functional changes in the endothelium for vascular disease. Arterioscler Thromb Vasc Biol 27:266–274

    PubMed  CAS  Google Scholar 

  • Speidel MT, Booyse FM, Abrams A, Moore MA, Chung BH (1990) Lipolyzed hypertriglyceridemic serum and triglyceride-rich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells High density lipoproteins inhibit this cytotoxicity. Thromb Res 58:251–264

    PubMed  CAS  Google Scholar 

  • Spencer BJ, Verma IM (2007) Targeted delivery of proteins across the blood–brain barrier. Proc Natl Acad Sci USA 104:7594–7599

    PubMed  CAS  Google Scholar 

  • Spieker LE, Sudano I, Hürlimann D, Lerch PG, Lang MG, Binggeli C, Corti R, Ruschitzka F, Lüscher TF, Noll G (2002) High-density lipoprotein restores endothelial function in hypercholesterolemic men. Circulation 105:1399–1402

    PubMed  CAS  Google Scholar 

  • Suc I, Escargueil-Blanc I, Troly M, Salvayre R, Nègre-Salvayre A (1997) HDL and ApoA prevent cell death of endothelial cells induced by oxidized LDL. Arterioscler Thromb Vasc Biol 17:2158–2166

    PubMed  CAS  Google Scholar 

  • Sugano M, Tsuchida K, Makino N (2000) High-density lipoproteins protect endothelial cells from tumor necrosis factor-alpha-induced apoptosis. Biochem Biophys Res Commun 272:872–876

    PubMed  CAS  Google Scholar 

  • Sumi M, Sata M, Miura S, Rye KA, Toya N, Kanaoka Y, Yanaga K, Ohki T, Saku K, Nagai R (2007) Reconstituted high-density lipoprotein stimulates differentiation of endothelial progenitor cells and enhances ischemia-induced angiogenesis. Arterioscler Thromb Vasc Biol 27:813–818

    PubMed  CAS  Google Scholar 

  • Tabas I, Williams KJ, Borén J (2007) Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116:1832–1844

    PubMed  CAS  Google Scholar 

  • Tamai O, Matsuoka H, Itabe H, Wada Y, Kohno K, Imaizumi T (1997) Single LDL apheresis improves endothelium-dependent vasodilatation in hypercholesterolemic humans. Circulation 95:76–82

    PubMed  CAS  Google Scholar 

  • Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ (2006) High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol 26:1144–1149

    PubMed  CAS  Google Scholar 

  • van den Berg BM, Spaan JA, Vink H (2009). Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch 457:1199–1206

    Google Scholar 

  • van Gils JM, Zwaginga JJ, Hordijk PL (2009). Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases. J Leukoc Biol 85:195–204

    Google Scholar 

  • van Oostrom O, Nieuwdorp M, Westerweel PE, Hoefer IE, Basser R, Stroes ES, Verhaar MC (2007) Reconstituted HDL increases circulating endothelial progenitor cells in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol 27:1864–1865

    PubMed  CAS  Google Scholar 

  • Viswambharan H, Ming XF, Zhu S, Hubsch A, Lerch P, Vergères G, Rusconi S, Yang Z (2004) Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase. Circ Res 94:918–925

    PubMed  CAS  Google Scholar 

  • von Otte S, Paletta JR, Becker S, König S, Fobker M, Greb RR, Kiesel L, Assmann G, Diedrich K, Nofer JR (2006) Follicular fluid high density lipoprotein-associated sphingosine 1-phosphate is a novel mediator of ovarian angiogenesis. J Biol Chem 281:5398–5405

    PubMed  CAS  Google Scholar 

  • Weinstein MM, Yin L, Beigneux AP, Davies BS, Gin P, Estrada K, Melford K, Bishop JR, Esko JD, Dallinga-Thie GM, Fong LG, Bensadoun A, Young SG (2008) Abnormal patterns of lipoprotein lipase release into the plasma in GPIHBP1-deficient mice. J Biol Chem 283:34511–34518

    PubMed  CAS  Google Scholar 

  • Wheeler-Jones CP (2007) Chylomicron remnants: mediators of endothelial dysfunction? Biochem Soc Trans 35:442–445

    PubMed  CAS  Google Scholar 

  • Wong H, Schotz MC (2002) The lipase gene family. J Lipid Res 43:993–999

    PubMed  CAS  Google Scholar 

  • Xia P, Vadas MA, Rye KA, Barter PJ, Gamble JR (1999) High density lipoproteins (HDL) interrupt the sphingosine kinase signalling pathway. A possible mechanism for protection against atherosclerosis by HDL. J Biol Chem 274:33143–33147

    PubMed  CAS  Google Scholar 

  • Yatomi Y (2008) Plasma sphingosine 1-phosphate metabolism and analysis. Biochim Biophys Acta 1780:606–611

    PubMed  CAS  Google Scholar 

  • Yuhanna IS, Zhu Y, Cox BE, Hahner LD, Osborne-Lawrence S, Lu P, Marcel YL, Anderson RG, Mendelsohn ME, Hobbs HH, Shaul PW (2001) High-density lipoprotein binding to scavenger receptor-BI activates endothelial nitric oxide synthase. Nat Med 7:853–857

    PubMed  CAS  Google Scholar 

  • Zambon A, Bertocco S, Vitturi N, Polentarutti V, Vianello D, Crepaldi G (2003) Relevance of hepatic lipase to the metabolism of triacylglycerol-rich lipoproteins. Biochem Soc Trans 31:1070–1074

    PubMed  CAS  Google Scholar 

  • Zampetaki A, Kirton JP, Xu Q (2008) Vascular repair by endothelial progenitor cells. Cardiovasc Res 78:413–421

    PubMed  CAS  Google Scholar 

  • Zhang Q, Liu L, Zheng XY (2008) Protective roles of HDL, apoA-I and mimetic peptide on endothelial function: through endothelial cells and endothelial progenitor cells. Int J Cardiol (in press)

    Google Scholar 

  • Zhao R, Ma X, Shen GX (2008) Transcriptional regulation of plasminogen activator inhibitor-1 in vascular endothelial cells induced by oxidized very low density lipoproteins. Mol Cell Biochem 317:197–204

    PubMed  CAS  Google Scholar 

  • Zheng XY, Liu L (2007) Remnant-like lipoprotein particles impair endothelial function: direct and indirect effects on nitric oxide synthase. J Lipid Res 48:1673–1680

    PubMed  CAS  Google Scholar 

  • Zhu W, Saddar S, Seetharam D, Chambliss KL, Longoria C, Silver DL, Yuhanna IS, Shaul PW, Mineo C (2008) The scavenger receptor class B type I adaptor protein PDZK1 maintains endothelial monolayer integrity. Circ Res 102:480–487

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold von Eckardstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

von Eckardstein, A., Rohrer, L. (2009). Role of the Endothelium in Lipoprotein Metabolism. In: Ehnholm, C. (eds) Cellular Lipid Metabolism. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00300-4_7

Download citation

Publish with us

Policies and ethics