Skip to main content

Platelets: A New Cell Type in Liver Physiology

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

Platelets are the smallest type of blood cells, which are only fragments of bone marrow megakaryocyte cytoplasm and are biconvex discs, approximately 3 μm in diameter. The development of megakaryocytes and production of platelets are unique processes. Megakaryocyte maturation involves nuclear duplication without cell division, resulting in giant cells. Cytoplasmic organelles are organized into domains representing nascent platelets, demarcated by a network of invaginated plasma membranes. Within the marrow, megakaryocytes are localized next to the sinusoidal walls and this facilitates the exit of large segments of cytoplasm into the circulation. The fragmentation of megakaryocyte cytoplasm into individual platelets then results from the shear forces of circulating blood [1]. Thrombopoietin (TPO) is the dominant hormone controlling megakaryocyte development, but many cytokines and hormones take part, including interleukins 3, 6, and 11 [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine = serotonin

5-HIAA:

5-hydroxyindol acetic acid

5-HTP:

5 hydroxytryptophan

CTL:

cytotoxic T lymphocytes response

EGF:

epidermal growth factor

HGF:

hepatocyte growth factor

HSC:

hepatic stellate cells

I/R:

ischemia/reperfusion

NASH:

nonalcoholic steatohepatitis

PDGF:

platelet-derived growth factor

SERT:

serotonin reuptake transporter

TGF-β:

transforming growth factor-β

TPO:

thrombopoietin

TPH:

tryptophan hydroxylase

References

  1. George JN (2000) Platelets. Lancet 355(9214):1531–1539

    Article  PubMed  CAS  Google Scholar 

  2. Kaushansky K (1995) Thrombopoietin: the primary regulator of platelet production. Blood 86(2):419–431

    PubMed  CAS  Google Scholar 

  3. Sixma JJ, Slot JW, Geuze HJ (1989) Immunocytochemical localization of platelet granule proteins. Methods Enzymol 169:301–311

    Article  PubMed  CAS  Google Scholar 

  4. Tyce GM (1990) Origin and metabolism of serotonin. J Cardiovasc Pharmacol 16(Suppl 3):S1–S7

    Google Scholar 

  5. Walther DJ, Peter JU, Bashammakh S et al (2003) Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 299(5603):76

    Article  PubMed  CAS  Google Scholar 

  6. Walther DJ, Bader M (2003) A unique central tryptophan hydroxylase isoform. Biochem Pharmacol 66(9):1673–1680

    Article  PubMed  CAS  Google Scholar 

  7. Gawaz M (2001) Blood platelets:physiology, physiopathology, membrane receptors, antiplatelet principles, and therapy for atherothrombotic diseases. Thieme, Stuttgart

    Google Scholar 

  8. Klinger MH (1997) Platelets and inflammation. Anat Embryol (Berl) 196(1):1–11

    Article  CAS  Google Scholar 

  9. Wu KK (1996) Platelet activation mechanisms and markers in arterial thrombosis. J Intern Med 239(1):17–34

    Article  PubMed  CAS  Google Scholar 

  10. Tang YQ, Yeaman MR, Selsted ME (2002) Antimicrobial peptides from human platelets. Infect Immun 70(12):6524–6533

    Article  PubMed  CAS  Google Scholar 

  11. Sierko E, Wojtukiewicz MZ (2004) Platelets and angiogenesis in malignancy. Semin Thromb Hemost 30(1):95–108

    Article  PubMed  CAS  Google Scholar 

  12. Borsig L, Wong R, Feramisco J et al (2001) Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A 98(6):3352–3357

    Article  PubMed  CAS  Google Scholar 

  13. Selzner N, Rudiger H, Graf R, Clavien PA (2003) Protective strategies against ischemic injury of the liver. Gastroenterology 125(3):917–936

    Article  PubMed  CAS  Google Scholar 

  14. Pereboom IT, Lisman T, Porte RJ (2008) Platelets in liver transplantation: friend or foe? Liver Transpl 14(7):923–931

    Article  PubMed  Google Scholar 

  15. Clavien PA, Harvey PR, Strasberg SM (1992) Preservation and reperfusion injuries in liver allografts. An overview and synthesis of current studies. Transplantation 53(5):957–978

    Article  PubMed  CAS  Google Scholar 

  16. Xu Y, Huo Y, Toufektsian MC et al (2006) Activated platelets contribute importantly to myocardial reperfusion injury. Am J Physiol Heart Circ Physiol 290(2):H692–H699

    Article  CAS  Google Scholar 

  17. Okada Y, Marchevsky AM, Zuo XJ et al (1997) Accumulation of platelets in rat syngeneic lung transplants: a potential factor responsible for preservation-reperfusion injury. Transplantation 64(6):801–806

    Article  PubMed  CAS  Google Scholar 

  18. Kuroda T, Shiohara E, Homma T et al (1994) Effects of leukocyte and platelet depletion on ischemia–reperfusion injury to dog pancreas. Gastroenterology 107(4):1125–1134

    PubMed  CAS  Google Scholar 

  19. Cywes R, Packham MA, Tietze L et al (1993) Role of platelets in hepatic allograft preservation injury in the rat. Hepatology 18(3):635–647

    Article  PubMed  CAS  Google Scholar 

  20. Porte RJ, Blauw E, Knot EA et al (1994) Role of the donor liver in the origin of platelet disorders and hyperfibrinolysis in liver transplantation. J Hepatol 21(4):592–600

    Article  PubMed  CAS  Google Scholar 

  21. Sindram D, Porte RJ, Hoffman MR et al (2000) Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology 118(1):183–191

    Article  PubMed  CAS  Google Scholar 

  22. Sindram D, Porte RJ, Hoffman MR et al (2001) Synergism between platelets and leukocytes in inducing endothelial cell apoptosis in the cold ischemic rat liver: a Kupffer cell-mediated injury. FASEB J 15(7):1230–1232

    PubMed  CAS  Google Scholar 

  23. Nakano Y, Kondo T, Matsuo R et al (2008) Platelets dynamics in the early phase of postischemic liver in vivo. J Surg Res 149(2):192–198

    Article  PubMed  CAS  Google Scholar 

  24. Gujral JS, Bucci TJ, Farhood A, Jaeschke H (2001) Mechanism of cell death during warm hepatic ischemia-reperfusion in rats: apoptosis or necrosis? Hepatology 33(2):397–405

    Article  PubMed  CAS  Google Scholar 

  25. Kohli V, Selzner M, Madden JF et al (1999) Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia-­reperfusion injury in the rat liver. Transplantation 67(8):1099–1105

    Article  PubMed  CAS  Google Scholar 

  26. Yadav SS, Howell DN, Steeber DA et al (1999) P-Selectin mediates reperfusion injury through neutrophil and platelet sequestration in the warm ischemic mouse liver. Hepatology 29(5):1494–1502

    Article  PubMed  CAS  Google Scholar 

  27. Khandoga A, Biberthaler P, Enders G et al (2002) Platelet adhesion mediated by fibrinogen-intercelllular adhesion molecule-1 binding induces tissue injury in the postischemic liver in vivo. Transplantation 74(5):681–688

    Article  PubMed  CAS  Google Scholar 

  28. Nocito A, Georgiev P, Dahm F et al (2007) Platelets and ­platelet-derived serotonin promote tissue repair after nor­mothermic hepatic ischemia in mice. Hepatology 45(2):369–376

    Article  PubMed  CAS  Google Scholar 

  29. Clavien PA, Petrowsky H, DeOliveira ML, Graf R (2007) Strategies for safer liver surgery and partial liver transplantation. N Engl J Med 356(15):1545–1559

    Article  PubMed  Google Scholar 

  30. Fausto N, Campbell JS, Riehle KJ (2006) Liver regeneration. Hepatology 43(2 Suppl 1):S45–S53

    Article  CAS  Google Scholar 

  31. Witters P, Freson K, Verslype C et al (2008) Review article: blood platelet number and function in chronic liver disease and cirrhosis. Aliment Pharmacol Ther 27(11):1017–1029

    Article  PubMed  CAS  Google Scholar 

  32. Poordad F (2007) Review article: thrombocytopenia in chronic liver disease. Aliment Pharmacol Ther 26(Suppl 1):5–11

    Article  PubMed  CAS  Google Scholar 

  33. Raines EW, Ross R (1985) Purification of human platelet-derived growth factor. Methods Enzymol 109:749–773

    Article  PubMed  CAS  Google Scholar 

  34. Assoian RK, Grotendorst GR, Miller DM, Sporn MB (1984) Cellular transformation by coordinated action of three peptide growth factors from human platelets. Nature 309(5971):804–806

    Article  PubMed  CAS  Google Scholar 

  35. Matsumoto K, Nakamura T (1992) Hepatocyte growth factor: molecular structure, roles in liver regeneration, and other biological functions. Crit Rev Oncog 3(1–2):27–54

    PubMed  CAS  Google Scholar 

  36. Kuwashima Y, Aoki K, Kohyama K, Ishikawa T (1990) Hepatocyte regeneration after partial hepatectomy occurs even under severely thrombocytopenic conditions in the rat. Jpn J Cancer Res 81(6-7):607–612

    PubMed  CAS  Google Scholar 

  37. Tomikawa M, Hashizume M, Highashi H et al (1996) The role of the spleen, platelets, and plasma hepatocyte growth factor activity on hepatic regeneration in rats. J Am Coll Surg 182(1):12–16

    PubMed  CAS  Google Scholar 

  38. Lesurtel M, Graf R, Aleil B et al (2006) Platelet-derived serotonin mediates liver regeneration. Science 312(5770):104–107

    Article  PubMed  CAS  Google Scholar 

  39. Murata S, Ohkohchi N, Matsuo R et al (2007) Platelets promote liver regeneration in early period after hepatectomy in mice. World J Surg 31(4):808–816

    Article  PubMed  Google Scholar 

  40. Matsuo R, Ohkohchi N, Murata S et al (2008) Platelets strongly induce hepatocyte proliferation with IGF-1 and HGF in vitro. J Surg Res 145(2):279–286

    Article  PubMed  CAS  Google Scholar 

  41. Murata S, Matsuo R, Ikeda O et al (2008) Platelets promote liver regeneration under conditions of Kupffer cell depletion after hepatectomy in mice. World J Surg 32(6):1088–1096

    Article  PubMed  Google Scholar 

  42. Lesurtel M, Soll C, Graf R, Clavien PA (2008) Role of serotonin in the hepato-gastroIntestinal tract: an old molecule for new perspectives. Cell Mol Life Sci 65(6):940–952

    Article  PubMed  CAS  Google Scholar 

  43. Yang M, Srikiatkhachorn A, Anthony M, Chong BH (1996) Serotonin stimulates megakaryocytopoiesis via the 5-HT2 receptor. Blood Coagul Fibrinolysis 7(2):127–133

    Article  PubMed  CAS  Google Scholar 

  44. Fanburg BL, Lee SL (1997) A new role for an old molecule: serotonin as a mitogen. Am J Physiol 272(5 Pt 1):L795–L806

    Google Scholar 

  45. Seuwen K, Pouyssegur J (1990) Serotonin as a growth factor. Biochem Pharmacol 39(6):985–990

    Article  PubMed  CAS  Google Scholar 

  46. Balasubramanian S, Paulose CS (1998) Induction of DNA synthesis in primary cultures of rat hepatocytes by serotonin: possible involvement of serotonin S2 receptor. Hepatology 27(1):62–66

    Article  PubMed  CAS  Google Scholar 

  47. Julius D, Huang KN, Livelli TJ et al (1990) The 5HT2 receptor defines a family of structurally distinct but functionally conserved serotonin receptors. Proc Natl Acad Sci U S A 87(3):928–932

    Article  PubMed  CAS  Google Scholar 

  48. Julius D, Livelli TJ, Jessell TM, Axel R (1989) Ectopic expression of the serotonin 1c receptor and the triggering of malignant transformation. Science 244(4908):1057–1062

    Article  PubMed  CAS  Google Scholar 

  49. Nebigil CG, Hickel P, Messaddeq N et al (2001) Ablation of serotonin 5-HT(2B) receptors in mice leads to abnor­mal cardiac structure and function. Circulation 103(24): 2973–2979

    PubMed  CAS  Google Scholar 

  50. Fiorica-Howells E, Maroteaux L, Gershon MD (2000) Serotonin and the 5-HT(2B) receptor in the development of enteric neurons. J Neurosci 20(1):294–305

    PubMed  CAS  Google Scholar 

  51. Gooz M, Gooz P, Luttrell LM, Raymond JR (2006) 5-HT2A receptor induces ERK phosphorylation and proliferation through ADAM-17 tumor necrosis factor-alpha-converting enzyme (TACE) activation and heparin-bound epidermal growth factor-like growth factor (HB-EGF) shedding in mesangial cells. J Biol Chem 281(30):21004–21012

    Article  PubMed  CAS  Google Scholar 

  52. Nebigil CG, Launay JM, Hickel P et al (2000) 5-hydroxytryptamine 2B receptor regulates cell-cycle progression: cross-talk with tyrosine kinase pathways. Proc Natl Acad Sci U S A 97(6):2591–2596

    Article  PubMed  CAS  Google Scholar 

  53. Liu Y, Li M, Warburton RR et al (2007) The 5-HT transporter transactivates the PDGF{beta} receptor in pulmonary artery smooth muscle cells. FASEB J 21:2725–2734

    Article  PubMed  CAS  Google Scholar 

  54. Aslamova LI, Blium Ia B, Tsudzevich BA, Kucherenko NE (1985) [Cyclic nucleotide levels in the regenerating liver of rats following irradiation and protection by serotonin]. Radiobiologiia 25(3):324–327

    PubMed  CAS  Google Scholar 

  55. Kulinskii AS, Saratikov AS, Vstavskaia Iu A, Udovitsina TI (1983) [Effect of substances altering the metabolism of endogenous serotonin on mitotic activity in the regenerating liver of mice]. Farmakol Toksikol 46(2):92–95

    PubMed  CAS  Google Scholar 

  56. Papadimas GK, Tzirogiannis KN, Panoutsopoulos GI et al (2006) Effect of serotonin receptor 2 blockage on liver regeneration after partial hepatectomy in the rat liver. Liver Int 26(3):352–361

    Article  PubMed  CAS  Google Scholar 

  57. Caldwell SH, Hoffman M, Lisman T et al (2006) Coagulation disorders and hemostasis in liver disease: pathophysiology and critical assessment of current management. Hepatology 44(4):1039–1046

    Article  PubMed  CAS  Google Scholar 

  58. Lisman T, Leebeek FW, de Groot PG (2002) Haemostatic abnormalities in patients with liver disease. J Hepatol 37(2): 280–287

    Article  PubMed  CAS  Google Scholar 

  59. Aster RH (1965) Splenic platelet pooling as a cause of “hypersplenic” thrombocytopenia. Trans Assoc Am Physicians 78:362–373

    PubMed  CAS  Google Scholar 

  60. Goulis J, Chau TN, Jordan S et al (1999) Thrombopoietin concentrations are low in patients with cirrhosis and thrombocytopenia and are restored after orthotopic liver transplantation. Gut 44(5):754–758

    Article  PubMed  CAS  Google Scholar 

  61. Kajihara M, Kato S, Okazaki Y et al (2003) A role of autoantibody-mediated platelet destruction in thrombocytopenia in patients with cirrhosis. Hepatology 37(6):1267–1276

    Article  PubMed  CAS  Google Scholar 

  62. Levine RF, Spivak JL, Meagher RC, Sieber F (1986) Effect of ethanol on thrombopoiesis. Br J Haematol 62(2): 345–354

    Article  PubMed  CAS  Google Scholar 

  63. Laffi G, Marra F, Gresele P et al (1992) Evidence for a storage pool defect in platelets from cirrhotic patients with defective aggregation. Gastroenterology 103(2):641–646

    PubMed  CAS  Google Scholar 

  64. Laffi G, Marra F, Failli P et al (1993) Defective signal transduction in platelets from cirrhotics is associated with increased cyclic nucleotides. Gastroenterology 105(1):148–156

    PubMed  CAS  Google Scholar 

  65. Laffi G, Cominelli F, Ruggiero M et al (1988) Altered platelet function in cirrhosis of the liver: impairment of inositol lipid and arachidonic acid metabolism in response to agonists. Hepatology 8(6):1620–1626

    Article  PubMed  CAS  Google Scholar 

  66. Pasche B, Ouimet H, Francis S, Loscalzo J (1994) Structural changes in platelet glycoprotein IIb/IIIa by plasmin: ­determinants and functional consequences. Blood 83(2):404–414

    PubMed  CAS  Google Scholar 

  67. Desai K, Mistry P, Bagget C et al (1989) Inhibition of platelet aggregation by abnormal high density lipoprotein particles in plasma from patients with hepatic cirrhosis. Lancet 1(8640):693–695

    Article  PubMed  CAS  Google Scholar 

  68. Turitto VT, Baumgartner HR (1975) Platelet interaction with subendothelium in a perfusion system: physical role of red blood cells. Microvasc Res 9(3):335–344

    Article  PubMed  CAS  Google Scholar 

  69. Cahill PA, Redmond EM, Sitzmann JV (2001) Endothelial dysfunction in cirrhosis and portal hypertension. Pharmacol Ther 89(3):273–293

    Article  PubMed  CAS  Google Scholar 

  70. Giannini EG (2006) Review article: thrombocytopenia in chronic liver disease and pharmacologic treatment options. Aliment Pharmacol Ther 23(8):1055–1065

    Article  PubMed  CAS  Google Scholar 

  71. Panasiuk A, Prokopowicz D, Zak J et al (2001) Activation of blood platelets in chronic hepatitis and liver cirrhosis P-selectin expression on blood platelets and secretory activity of beta-thromboglobulin and platelet factor-4. Hepatogastroenterology 48(39):818–822

    PubMed  CAS  Google Scholar 

  72. Vardareli E, Saricam T, Demirustu C, Gulbas Z (2007) Soluble P selectin levels in chronic liver disease: relationship to disease severity. Hepatogastroenterology 54(74):466–469

    PubMed  CAS  Google Scholar 

  73. Weyrich AS, Zimmerman GA (2004) Platelets: signaling cells in the immune continuum. Trends Immunol 25(9):489–495

    Article  PubMed  CAS  Google Scholar 

  74. Iannacone M, Sitia G, Isogawa M et al (2005) Platelets mediate cytotoxic T lymphocyte-induced liver damage. Nat Med 11(11):1167–1169

    Article  PubMed  CAS  Google Scholar 

  75. Lang PA, Contaldo C, Georgiev P et al (2008) Aggravation of viral hepatitis by platelet-derived serotonin. Nat Med 14(7): 756–761

    Article  PubMed  CAS  Google Scholar 

  76. Marasini B, Biondi ML, Agostoni A (1989) Platelet and plasma serotonin in patients with liver cirrhosis. J Clin Chem Clin Biochem 27(7):419–421

    PubMed  CAS  Google Scholar 

  77. Borcsiczky D, Szalay F, Tekes K et al (1996) Platelet serotonin (5-HT) content is decreased in patients with alcoholic liver cirrhosis, but elevated in Gilbert’s syndrome. J Hepatol 25(5):781–782

    Article  PubMed  CAS  Google Scholar 

  78. Beaudry P, Hadengue A, Callebert J et al (1994) Blood and plasma 5-hydroxytryptamine levels in patients with cirrhosis. Hepatology 20(4 Pt 1):800–803

    Article  PubMed  CAS  Google Scholar 

  79. Watanabe M, Murata S, Hashimoto I et al (2009) Platelets contribute to the reduction of liver fibrosis in mice. J Gastroenterol Hepatol 24:78–89

    Article  PubMed  CAS  Google Scholar 

  80. Bataller R, Brenner DA (2005) Liver fibrosis. J Clin Invest 115(2):209–218

    PubMed  CAS  Google Scholar 

  81. Mann DA, Smart DE (2002) Transcriptional regulation of hepatic stellate cell activation. Gut 50(6):891–896

    Article  PubMed  CAS  Google Scholar 

  82. Ruddell RG, Oakley F, Hussain Z et al (2006) A role for serotonin (5-HT) in hepatic stellate cell function and liver fibrosis. Am J Pathol 169(3):861–876

    Article  PubMed  CAS  Google Scholar 

  83. Nocito A, Dahm F, Jochum W et al (2007) Serotonin mediates oxidative stress and mitochondrial toxicity in a murine model of nonalcoholic steatohepatitis. Gastroenterology 133(2):608–618

    Article  PubMed  CAS  Google Scholar 

  84. Day CP, James OF (1998) Steatohepatitis: a tale of two “hits”? Gastroenterology 114(4):842–845

    Article  PubMed  CAS  Google Scholar 

  85. Bianchi P, Kunduzova O, Masini E et al (2005) Oxidative stress by monoamine oxidase mediates receptor-independent cardiomyocyte apoptosis by serotonin and postischemic myocardial injury. Circulation 112(21):3297–3305

    Article  PubMed  CAS  Google Scholar 

  86. Georgiev P, Jochum W, Heinrich S et al (2008) Characterization of time-related changes after experimental bile duct ligation. Br J Surg 95(5):646–656

    Article  PubMed  CAS  Google Scholar 

  87. Laschke MW, Dold S, Menger MD et al (2008) Platelet-dependent accumulation of leukocytes in sinusoids mediates hepatocellular damage in bile duct ligation-induced cholestasis. Br J Pharmacol 153(1):148–156

    Article  PubMed  CAS  Google Scholar 

  88. Marzioni M, Glaser S, Francis H et al (2005) Autocrine/paracrine regulation of the growth of the biliary tree by the neuroendocrine hormone serotonin. Gastroenterology 128(1):121–137

    Article  PubMed  CAS  Google Scholar 

  89. Clavien PA (2008) Liver regeneration: a spotlight on the novel role of platelets and serotonin. Swiss Med Wkly 138(25–26):361–370

    PubMed  CAS  Google Scholar 

  90. Ruddell RG, Mann DA, Ramm GA (2008) The function of serotonin within the liver. J Hepatol 48(4):666–675

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Alain Clavien .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lesurtel, M., Clavien, PA. (2010). Platelets: A New Cell Type in Liver Physiology. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics