Skip to main content

MicroRNAs

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases

Abstract

MicroRNAs (miRNA) are small, naturally occurring single-stranded RNA of about 21–23 nucleotide in length. They are generated from endogenous transcripts that are encoded in the genomes of humans, animals, viruses, and plants. The first short noncoding miRNA, lin-4 that regulates gene expression in nematode C. elegans was identified by Victor Ambros et al. in 1993 [1]. The miRNA world did not take off until the discovery of let-7, a second miRNA discovered by Ruvkun and Horvitz in 2000 [2], and the rise in interest in another class of short RNA, silencing RNA (siRNA) [3, 4]. The highly conserved nature of let-7 also attracted a great deal of attention to miRNA research. Since its discovery, more miRNAs in various organisms, from protozoans to humans have been identified. Currently, a total of 873 miRNAs have been reported in human (miRBase 11.0, April 2008), and many of them are encoded in polycistronic transcripts. The expression of miRNA, in general, is both organ-specific and dependent on the stage of development [5, 6]. miRNAs have diverse functions including regulation of important cellular processes e.g., cancer, cell metabolism, immune function, cell proliferation, apoptosis, tissue development, and differentiation [7–11].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  1. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  2. Reinhart BJ, Slack FJ, Basson M et al (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  3. Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  CAS  PubMed  Google Scholar 

  4. Sharp PA, Zamore PD (2000) Molecular biology. RNA interference. Science 287:2431–2433

    Article  CAS  PubMed  Google Scholar 

  5. Lagos-Quintana M, Rauhut R, Yalcin A et al (2002) Identification of tissue-specific microRNAs from mouse. Curr Biol 12:735–739

    Article  CAS  PubMed  Google Scholar 

  6. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5:351–358

    Article  CAS  PubMed  Google Scholar 

  7. Esau C, Davis S, Murray SF et al (2006) miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3:87–98

    Article  CAS  PubMed  Google Scholar 

  8. Esau C, Kang X, Peralta E et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279:52361 –52365

    Article  CAS  PubMed  Google Scholar 

  9. Meng F, Henson R, Wehbe-Janek H et al (2007) The MicroRNA let-7a modulates interleukin-6-dependent STAT-3 survival signaling in malignant human cholangiocytes. J Biol Chem 282:8256–8264

    Article  CAS  PubMed  Google Scholar 

  10. Thompson BJ, Cohen SM (2006) The Hippo pathway regulates the bantam microRNA to control cell proliferation and apoptosis in Drosophila. Cell 126:767–774

    Article  CAS  PubMed  Google Scholar 

  11. Alvarez-Garcia I, Miska EA (2005) MicroRNA functions in animal development and human disease. Development 132: 4653–4662

    Article  CAS  PubMed  Google Scholar 

  12. Kim VN (2005) MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 6:376–385

    Article  CAS  PubMed  Google Scholar 

  13. Ketting RF, Fischer SE, Bernstein E et al (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    Article  CAS  PubMed  Google Scholar 

  14. Lund E, Guttinger S, Calado A et al (2004) Nuclear export of microRNA precursors. Science 303:95–98

    Article  CAS  PubMed  Google Scholar 

  15. Denli AM, Tops BB, Plasterk RH et al (2004) Processing of primary microRNAs by the Microprocessor complex. Nature 432:231–235

    Article  CAS  PubMed  Google Scholar 

  16. Grishok A, Pasquinelli AE, Conte D et al (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    Article  CAS  PubMed  Google Scholar 

  17. Hammond SM, Bernstein E, Beach D et al (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  CAS  PubMed  Google Scholar 

  18. Meister G, Landthaler M, Patkaniowska A et al (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15:185–197

    Article  CAS  PubMed  Google Scholar 

  19. Gregory RI, Yan KP, Amuthan G et al (2004) The Micro­processor complex mediates the genesis of microRNAs. Nature 432:235–240

    Article  CAS  PubMed  Google Scholar 

  20. Rodriguez A, Griffiths-Jones S, Ashurst JL et al (2004) Identification of mammalian microRNA host genes and transcription units. Genome Res 14:1902–1910

    Article  CAS  PubMed  Google Scholar 

  21. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11:241–247

    Article  CAS  PubMed  Google Scholar 

  22. Calin GA, Sevignani C, Dumitru CD et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101:2999–3004

    Article  CAS  PubMed  Google Scholar 

  23. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  24. Pillai RS, Bhattacharyya SN, Artus CG et al (2005) Inhibition of translational initiation by Let-7 MicroRNA in human cells. Science 309:1573–1576

    Article  CAS  PubMed  Google Scholar 

  25. Mansfield JH, Harfe BD, Nissen R et al (2004) MicroRNA-responsive “sensor” transgenes uncover Hox-like and other developmentally regulated patterns of vertebrate microRNA expression. Nat Genet 36:1079–1083

    Article  CAS  PubMed  Google Scholar 

  26. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304:594–596

    Article  CAS  PubMed  Google Scholar 

  27. Guo HS, Xie Q, Fei JF et al (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for arabidopsis lateral root development. Plant Cell 17:1376–1386

    Article  CAS  PubMed  Google Scholar 

  28. Bagga S, Bracht J, Hunter S et al (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122:553–563

    Article  CAS  PubMed  Google Scholar 

  29. Jing Q, Huang S, Guth S et al (2005) Involvement of microRNA in AU-rich element-mediated mRNA instability. Cell 120:623–634

    Article  CAS  PubMed  Google Scholar 

  30. Lall S, Grun D, Krek A et al (2006) A genome-wide map of conserved microRNA targets in C. elegans. Curr Biol 16: 460–471

    Article  CAS  PubMed  Google Scholar 

  31. Lewis BP, Shih IH, Jones-Rhoades MW et al (2003) Prediction of mammalian microRNA targets. Cell 115:787–798

    Article  CAS  PubMed  Google Scholar 

  32. Brennecke J, Stark A, Russell RB et al (2005) Principles of microRNA-target recognition. PLoS Biol 3:e85

    Article  Google Scholar 

  33. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120:15–20

    Article  CAS  PubMed  Google Scholar 

  34. Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310:1817–1821

    Article  CAS  PubMed  Google Scholar 

  35. Zeng Y, Wagner EJ, Cullen BR (2002) Both natural and designed micro RNAs can inhibit the expression of cognate mRNAs when expressed in human cells. Mol Cell 9: 1327–1333

    Article  CAS  PubMed  Google Scholar 

  36. Chung KH, Hart CC, Al-Bassam S et al (2006) Polycistronic RNA polymerase II expression vectors for RNA interference based on BIC/miR-155. Nucleic Acids Res 34:e53

    Article  Google Scholar 

  37. Krutzfeldt J, Rajewsky N, Braich R et al (2005) Silencing of microRNAs in vivo with “antagomirs”. Nature 438: 685–689

    Article  PubMed  Google Scholar 

  38. Cheung O, Puri P, Eicken C et al (2008) Nonalcoholic steatohepatitis is associated with altered hepatic microRNA expression. Hepatology 48:1810–1820

    Article  CAS  PubMed  Google Scholar 

  39. Meister G, Landthaler M, Dorsett Y et al (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  CAS  PubMed  Google Scholar 

  40. Bloomston M, Frankel WL, Petrocca F et al (2007) MicroRNA expression patterns to differentiate pancreatic adenocarcinoma from normal pancreas and chronic pancreatitis. JAMA 297:1901–1908

    Article  CAS  PubMed  Google Scholar 

  41. Ji R, Cheng Y, Yue J et al (2007) MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 100:1579–1588

    Article  CAS  PubMed  Google Scholar 

  42. Bentwich I (2005) Prediction and validation of microRNAs and their targets. FEBS Lett 579:5904–5910

    Article  CAS  PubMed  Google Scholar 

  43. Gottwein E, Cai X, Cullen BR (2006) A novel assay for viral microRNA function identifies a single nucleotide polymorphism that affects Drosha processing. J Virol 80: 5321–5326

    Article  CAS  PubMed  Google Scholar 

  44. Georgantas RW 3rd, Hildreth R, Morisot S et al (2007) CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci U S A 104:2750–2755

    Article  CAS  PubMed  Google Scholar 

  45. Thermann R, Hentze MW (2007) Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878

    Article  CAS  PubMed  Google Scholar 

  46. Maroney PA, Yu Y, Fisher J et al (2006) Evidence that microRNAs are associated with translating messenger RNAs in human cells. Nat Struct Mol Biol 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  47. Nottrott S, Simard MJ, Richter JD (2006) Human let-7a miRNA blocks protein production on actively translating polyribosomes. Nat Struct Mol Biol 13:1108–1114

    Article  CAS  PubMed  Google Scholar 

  48. Pontes O, Pikaard CS (2008) siRNA and miRNA processing: new functions for Cajal bodies. Curr Opin Genet Dev 18:197–203

    Article  CAS  PubMed  Google Scholar 

  49. Anderson P, Kedersha N (2008) Stress granules: the Tao of RNA triage. Trends Biochem Sci 33:141–150

    CAS  PubMed  Google Scholar 

  50. Bhattacharyya SN, Habermacher R, Martine U et al (2006) Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol 71:513–521

    Article  CAS  PubMed  Google Scholar 

  51. Liu J, Valencia-Sanchez MA, Hannon GJ et al (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 7:719–723

    Article  CAS  PubMed  Google Scholar 

  52. Chang J, Nicolas E, Marks D et al (2004) miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1:106–113

    CAS  PubMed  Google Scholar 

  53. Reddy JK, Rao MS (2006) Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation. Am J Physiol Gastrointest Liver Physiol 290:G852–G858

    Article  Google Scholar 

  54. Chang J, Guo JT, Jiang D et al (2008) Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 82:8215–8223

    Article  CAS  PubMed  Google Scholar 

  55. Jopling CL, Yi M, Lancaster AM et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 309:1577–1581

    Article  CAS  PubMed  Google Scholar 

  56. Jopling CL, Norman KL, Sarnow P (2006) Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol 71:369–376

    Article  CAS  PubMed  Google Scholar 

  57. Pedersen IM, Cheng G, Wieland S et al (2007) Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449:919–922

    Article  CAS  PubMed  Google Scholar 

  58. Sarasin-Filipowicz M, Krol J, Markiewicz I et al (2009) Decreased levels of miRNA miR-122 in individuals with hepatitis C responding poorly to interferon therapy. Nature Med 15:31–33

    Article  CAS  PubMed  Google Scholar 

  59. Kutay H, Bai S, Datta J et al (2006) Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99:671–678

    Article  CAS  PubMed  Google Scholar 

  60. Varnholt H, Drebber U, Schulze F et al (2008) MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47:1223–1232

    Article  CAS  PubMed  Google Scholar 

  61. Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:338–345

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun J. Sanyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheung, O., Sanyal, A.J. (2010). MicroRNAs. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_33

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics