Skip to main content

Targeting mTOR Signaling Pathways in Liver Disease

  • Chapter
  • First Online:
Signaling Pathways in Liver Diseases
  • 1625 Accesses

Abstract

Over the last 15 years, the Ser/Thr protein kinase mammalian target of rapamycin (mTOR) has emerged as a critical regulator of cell growth, proliferation, apoptosis, and metabolism [1]. The diversity of intracellular responses, in which mTOR is implicated, stems from the fact that it integrates input from distinct signaling effectors (growth factors and nutrients) and acts on specific substrates depending on its ­interaction in multienzyme protein complexes termed mTOR complexes [1]. In addition, mTOR signaling is negatively regulated by several tumor suppressors. In a largely selective manner, the macrolide antibiotic rapamycin inhibits the activity of one of the mTOR complexes, mTOR Complex1 (mTORC1, see below). Rapamycin (sirolimus) and its derivatives (AP23573, CCI-779, and RAD001) are used in the clinic as immunosuppressive agents in organ transplantation and as antiproliferative and antiangiogenic agents to prevent coronary restenosis and treat cancer. Here, we will review the molecular mechanisms known to regulate mTOR signaling pathways, illustrate the role of mTOR signaling in liver disease, and report on the preclinical and clinical studies targeting mTOR to treat liver cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dann SG, Selvaraj A, Thomas G (2007) mTOR complex1–S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13(6):252–259

    Article  PubMed  CAS  Google Scholar 

  2. Kim DH, Sarbassov DD, Ali SM et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  PubMed  CAS  Google Scholar 

  3. Kim DH, Sarbassov dos D, Ali SM et al (2003) GbetaL, a positive regulator of the rapamycin-sensitive pathway required for the nutrient-sensitive interaction between raptor and mTOR. Mol Cell 11(4):895–904

    Article  PubMed  CAS  Google Scholar 

  4. Hara K, Maruki Y, Long X et al (2002) Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110(2):177–189

    Article  PubMed  CAS  Google Scholar 

  5. Loewith R, Jacinto E, Wullschleger S et al (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3): 457–468

    Article  PubMed  CAS  Google Scholar 

  6. Haar EV, Lee SI, Bandhakavi S et al (2007) Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9:316–323

    Article  CAS  Google Scholar 

  7. Schalm SS, Blenis J (2002) Identification of a conserved motif required for mTOR signaling. Curr Biol 12(8): 632–639

    Article  PubMed  CAS  Google Scholar 

  8. Jacinto E, Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410(1):19–37

    Article  PubMed  CAS  Google Scholar 

  9. Banko JL, Hou L, Poulin F et al (2006) Regulation of eukaryotic initiation factor 4E by converging signaling pathways during metabotropic glutamate receptor-dependent long-term depression. J Neurosci 26(8):2167–2173

    Article  PubMed  CAS  Google Scholar 

  10. Sarbassov DD, Ali SM, Kim DH et al (2004) Rictor, a novel binding partner of mTOR, defines a rapamycin-insensitive and raptor-independent pathway that regulates the cytoskeleton. Curr Biol 14(14):1296–1302

    Article  PubMed  CAS  Google Scholar 

  11. Jacinto E, Loewith R, Schmidt A et al (2004) Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat Cell Biol 6(11):1122–1128

    Article  PubMed  CAS  Google Scholar 

  12. Yang Q, Inoki K, Ikenoue T et al (2006) Identification of Sin1 as an essential TORC2 component required for complex formation and kinase activity. Genes Dev 20(20): 2820–2832

    Article  PubMed  CAS  Google Scholar 

  13. Frias MA, Thoreen CC, Jaffe JD et al (2006) mSin1 is necessary for Akt/PKB phosphorylation, and its isoforms define three distinct mTORC2s. Curr Biol 16(18):1865–1870

    Article  PubMed  CAS  Google Scholar 

  14. Sarbassov DD, Guertin DA, Ali SM et al (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101

    Article  PubMed  CAS  Google Scholar 

  15. Pearce LR, Huang X, Boudeau J et al (2007) Identification of Protor as a novel Rictor-binding component of mTOR complex-2. Biochem J 405(3):513–522

    Article  PubMed  CAS  Google Scholar 

  16. Thedieck K, Polak P, Kim ML et al (2007) PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS ONE 2(11):e1217

    Article  CAS  Google Scholar 

  17. Woo SY, Kim DH, Jun CB et al (2007) PRR5, a novel component of mTOR complex 2, regulates platelet-derived growth factor receptor beta expression and signaling. J Biol Chem 282(35):25604–25612

    Article  PubMed  CAS  Google Scholar 

  18. Lee YH, White MF (2004) Insulin receptor substrate proteins and diabetes. Arch Pharm Res 27(4):361–370

    Article  PubMed  CAS  Google Scholar 

  19. Taniguchi CM, Ueki K, Kahn R (2005) Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest 115(3):718–727

    PubMed  CAS  Google Scholar 

  20. Zick Y (2001) Insulin resistance: a phosphorylation-based uncoupling of insulin signaling. Trends Cell Biol 11(11): 437–441

    Article  PubMed  CAS  Google Scholar 

  21. Pawson T (1995) Protein modules and signalling networks. Nature 373:573–579

    Article  PubMed  CAS  Google Scholar 

  22. Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  23. Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9(4):125–128

    Article  PubMed  CAS  Google Scholar 

  24. Roux PP, Ballif BA, Anjum R et al (2004) Tumor-promoting phorbol esters and activated Ras inactivate the tuberous sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc Natl Acad Sci U S A 101(37):13489–13494

    Article  PubMed  CAS  Google Scholar 

  25. Ma L, Chen Z, Erdjument-Bromage H et al (2005) Phos­phorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121(2):179–193

    Article  PubMed  CAS  Google Scholar 

  26. Rodriguez-Viciana P, Warne PH, Dhand R et al (1994) Phos­phatidylinositol-3-OH kinase as a direct target of Ras. Nature 370(6490):527–532

    Article  PubMed  CAS  Google Scholar 

  27. Garami A, Zwartkruis FJ, Nobukuni T et al (2003) Insulin activation of Rheb, a mediator of mTOR/S6K/4E-BP signaling, is inhibited by TSC1 and 2. Mol Cell 11(6):1457–1466

    Article  PubMed  CAS  Google Scholar 

  28. Long X, Lin Y, Ortiz-Vega S et al (2005) Rheb Binds and Regulates the mTOR Kinase. Curr Biol 15(8):702–713

    Article  PubMed  CAS  Google Scholar 

  29. Byfield MP, Murray JT, Backer JM (2005) hVps34 is a nutrient-regulated lipid kinase required for activation of p70 S6 kinase. J Biol Chem 280(38):33076–33082

    Article  PubMed  CAS  Google Scholar 

  30. Nobukuni T, Joaquin M, Roccio M et al (2005) Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OH-kinase. Proc Natl Acad Sci U S A 102(40):14238–14243

    Article  PubMed  CAS  Google Scholar 

  31. Zhang Y, Guo K, LeBlanc RE et al (2007) Increasing dietary leucine intake reduces diet-induced obesity and improves glucose and cholesterol metabolism in mice via multimechanisms. Diabetes 56(6):1647–1654

    Article  PubMed  CAS  Google Scholar 

  32. Nobukuni T, Kozma SC, Thomas G (2007) hvps34, an ancient player, enters a growing game: mTOR Complex1/S6K1 signaling. Curr Opin Cell Biol 19(2):135–141

    Article  PubMed  CAS  Google Scholar 

  33. Gulati P, Gaspers LD, Dann SG et al (2008) Amino acids activate mTOR complex 1 via Ca2+/CaM signaling to hVps34. Cell Metab 7(5):456–465

    Article  PubMed  CAS  Google Scholar 

  34. Sancak Y, Peterson TR, Shaul YD et al (2008) The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 320(5882):1496–1501

    Article  PubMed  CAS  Google Scholar 

  35. Kim E, Goraksha-Hicks P, Li L et al (2008) Regulation of TORC1 by Rag GTPases in nutrient response. Nat Cell Biol 10:935–945

    Article  PubMed  CAS  Google Scholar 

  36. Dennis PB, Jaeschke A, Saitoh M et al (2001) Mammalian TOR: a homeostatic ATP sensor. Science 294(5544): 1102–1105

    Article  PubMed  CAS  Google Scholar 

  37. Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590

    Article  PubMed  CAS  Google Scholar 

  38. Shaw RJ, Bardeesy N, Manning BD et al (2004) The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6(1):91–99

    Article  PubMed  CAS  Google Scholar 

  39. Fang Y, Vilella-Bach M, Bachmann R et al (2001) Phos­phatidic acid-mediated mitogenic activation of mTOR signaling. Science 294(5548):1942–1945

    Article  PubMed  CAS  Google Scholar 

  40. Volarevic S, Stewart MJ, Ledermann B et al (2000) Prolif­eration, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288(5473):2045–2047

    Article  PubMed  CAS  Google Scholar 

  41. Fumagalli S, Thomas G (2000) S6 phosphorylation and signal transduction. In: Sonenberg N, Hershey JWB, Mathews M (eds) Translational control of gene expression. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 695–717

    Google Scholar 

  42. Roux PP, Shahbazian D, Vu H et al (2007) RAS/ERK signaling promotes site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J Biol Chem 282(19):14056–14064

    Article  PubMed  CAS  Google Scholar 

  43. Holland EC, Sonenberg N, Pandolfi PP et al (2004) Signaling control of mRNA translation in cancer pathogenesis. Onco­gene 23(18):3138–3144

    Article  PubMed  CAS  Google Scholar 

  44. Raught B, Peiretti F, Gingras AC et al (2004) Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. Embo J 23(8):1761–1769

    Article  PubMed  CAS  Google Scholar 

  45. Wang X, Li W, Williams M et al (2001) Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. Embo J 20(16):4370–4379

    Article  PubMed  CAS  Google Scholar 

  46. Harada H, Andersen JS, Mann M et al (2001) p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc Natl Acad Sci U S A 98(17): 9666–9670

    Article  PubMed  CAS  Google Scholar 

  47. Richardson CJ, Broenstrup M, Fingar DC et al (2004) SKAR is a specific target of S6 kinase 1 in cell growth control. Curr Biol 14(17):1540–1549

    Article  PubMed  CAS  Google Scholar 

  48. Dorrello NV, Peschiaroli A, Guardavaccaro D et al (2006) S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314(5798): 467–471

    Article  PubMed  CAS  Google Scholar 

  49. Gingras AC, Raught B, Sonenberg N (2001) Regulation of translation initiation by FRAP/mTOR. Genes Dev 15(7):807–826

    Article  PubMed  CAS  Google Scholar 

  50. Lynch CJ, Hutson SM, Patson BJ et al (2002) Tissue-specific effects of chronic dietary leucine and norleucine supplementation on protein synthesis in rats. Am J Physiol Endocrinol Metab 283(4):E824–E835

    Google Scholar 

  51. Carvalho L, Parise ER (2006) Evaluation of nutritional status of nonhospitalized patients with liver cirrhosis. Arq Gastroenterol 43(4):269–274

    Article  PubMed  Google Scholar 

  52. Khanna S, Gopalan S (2007) Role of branched-chain amino acids in liver disease: the evidence for and against. Curr Opin Clin Nutr Metab Care 10(3):297–303

    Article  PubMed  CAS  Google Scholar 

  53. Alberino F, Gatta A, Amodio P et al (2001) Nutrition and survival in patients with liver cirrhosis. Nutrition 17(6):445–450

    Article  PubMed  CAS  Google Scholar 

  54. Marchesini G, Bianchi G, Merli M et al (2003) Nutritional supplementation with branched-chain amino acids in advanced cirrhosis: a double-blind, randomized trial. Gastro­enterology 124(7):1792–1801

    Article  PubMed  CAS  Google Scholar 

  55. Henkel AS, Buchman AL (2006) Nutritional support in patients with chronic liver disease. Nat Clin Pract Gastro­enterol Hepatol 3(4):202–209

    Article  PubMed  CAS  Google Scholar 

  56. Um SH, Frigerio F, Watanabe M et al (2004) Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431(7005):200–205

    Article  PubMed  CAS  Google Scholar 

  57. Harrington LS, Findlay GM, Gray A et al (2004) The TSC1–2 tumor suppressor controls insulin-PI3K signaling via regulation of IRS proteins. J Cell Biol 166(2):213–223

    Article  PubMed  CAS  Google Scholar 

  58. Shah OJ, Wang Z, Hunter T (2004) Inappropriate activation of the TSC/Rheb/mTOR/S6K cassette induces IRS1/2 depletion, insulin resistance, and cell survival deficiencies. Curr Biol 14(18):1650–1656

    Article  PubMed  CAS  Google Scholar 

  59. Jaeschke A, Hartkamp J, Saitoh M et al (2002) Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol 159(2):217–224

    Article  PubMed  CAS  Google Scholar 

  60. Hara K, Yonezawa K, Weng QP et al (1998) Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. J Biol Chem 273(23):14484–14494

    Article  PubMed  CAS  Google Scholar 

  61. Patti ME, Brambilla E, Luzi L et al (1998) Bidirectional modulation of insulin action by amino acids. J Clin Invest 101(7):1519–1529

    Article  PubMed  CAS  Google Scholar 

  62. Tremblay F, Marette A (2001) Amino acid and insulin signaling via the mTOR/p70 S6 kinase pathway. A negative feedback mechanism leading to insulin resistance in skeletal muscle cells. J Biol Chem 276(41):38052–38060

    PubMed  CAS  Google Scholar 

  63. Felig P, Marliss E, Cahill GF Jr (1969) Plasma amino acid levels and insulin secretion in obesity. N Engl J Med 281(15): 811–816

    Article  PubMed  CAS  Google Scholar 

  64. Felig P, Marliss E, Cahill GF Jr (1970) Are plasma amino acid levels elevated in obesity? N Engl J Med 282(3):166

    PubMed  CAS  Google Scholar 

  65. Felig P, Wahren J, Hendler R et al (1974) Splanchnic glucose and amino acid metabolism in obesity. J Clin Invest 53(2): 582–590

    Article  PubMed  CAS  Google Scholar 

  66. Krebs M, Brehm A, Krssak M et al (2003) Direct and indirect effects of amino acids on hepatic glucose metabolism in humans. Diabetologia 46(7):917–925

    Article  PubMed  CAS  Google Scholar 

  67. Krebs M, Krssak M, Bernroider E et al (2002) Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes 51(3):599–605

    Article  PubMed  CAS  Google Scholar 

  68. Ueno M, Carvalheira JB, Tambascia RC et al (2005) Regulation of insulin signalling by hyperinsulinaemia: role of IRS-1/2 serine phosphorylation and the mTOR/p70 S6K pathway. Diabetologia 48(3):506–518

    Article  PubMed  CAS  Google Scholar 

  69. Tremblay F, Brule S, Hee Um S et al (2007) Identification of IRS-1 Ser-1101 as a target of S6K1 in nutrient- and obesity-induced insulin resistance. Proc Natl Acad Sci U S A 104(35):14056–14061

    Article  PubMed  CAS  Google Scholar 

  70. Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3(6):393–402

    Article  PubMed  CAS  Google Scholar 

  71. Aloni R, Peleg D, Meyuhas O (1992) Selective translational control and nonspecific posttransciptional regulation of ribosomal protein gene expression during development and regeneration of rat liver. Mol Cell Biol 12:2203–2212

    PubMed  CAS  Google Scholar 

  72. Nabeshima YI, Ogata K (1980) Stimulation of the synthesis of ribosomal proteins in regenerating rat liver with special reference to the increase in the amounts of effective mRNAs for ribosomal proteins. Eur J Biochem 107(2):323–329

    Article  PubMed  CAS  Google Scholar 

  73. Perry RP (2005) The architecture of mammalian ribosomal protein promoters. BMC Evol Biol 5(1):15

    Article  PubMed  CAS  Google Scholar 

  74. Levy S, Avni D, Hariharan N et al (1991) Oligopyrimidine tract at the 5’ end of mammalian ribosomal protein mRNAs is required for their translational control. Proc Natl Acad Sci USA 88:3319–3323

    Article  PubMed  CAS  Google Scholar 

  75. Jefferies HBJ, Fumagalli S, Dennis PB et al (1997) Rapamycin suppresses 5’TOP mRNA translation through inhibition of p70s6k. EMBO J 12:3693–3704

    Article  Google Scholar 

  76. Terada N, Patel HR, Takase K et al (1994) Rapamycin selectively inhibits translation of mRNAs encoding elongation factors and ribosomal proteins. Proc Natl Acad Sci U S A 91:11477–11481

    Article  PubMed  CAS  Google Scholar 

  77. Jefferies HBJ, Reinhard C, Kozma SC et al (1994) Rapamycin selectively represses translation of the “polypyrimidine tract” mRNA family. Proc Natl Acad Sci USA 91:4441–4445

    Article  PubMed  CAS  Google Scholar 

  78. Reiter AK, Anthony TG, Anthony JC et al (2004) The mTOR signaling pathway mediates control of ribosomal protein mRNA translation in rat liver. Int J Biochem Cell Biol 36(11):2169–2179

    Article  PubMed  CAS  Google Scholar 

  79. Mayer C, Zhao J, Yuan X et al (2004) mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability. Genes Dev 18(4):423–434

    Article  PubMed  CAS  Google Scholar 

  80. Jiang YP, Ballou LM, Lin RZ (2001) Rapamycin-insensitive regulation of 4e-BP1 in regenerating rat liver. J Biol Chem 276(14):10943–10951

    Article  PubMed  CAS  Google Scholar 

  81. Palmes D, Zibert A, Budny T et al (2008) Impact of rapamycin on liver regeneration. Virchows Arch 452(5):545–557

    Article  PubMed  CAS  Google Scholar 

  82. Marchesini G, Moscatiello S, Di Domizio S et al (2008) Obesity-associated liver disease. J Clin Endocrinol Metab 93(11 Suppl 1):S74–S80

    Article  CAS  Google Scholar 

  83. El-Serag HB, Hampel H, Javadi F (2006) The association between diabetes and hepatocellular carcinoma: a systematic review of epidemiologic evidence. Clin Gastroenterol Hepatol 4(3):369–380

    Article  PubMed  Google Scholar 

  84. Khamzina L, Veilleux A, Bergeron S et al (2005) Increased activation of the mammalian target of rapamycin pathway in liver and skeletal muscle of obese rats: possible involvement in obesity-linked insulin resistance. Endocrinology 146(3):1473–1481

    Article  PubMed  CAS  Google Scholar 

  85. Le Bacquer O, Petroulakis E, Paglialunga S et al (2007) Elevated sensitivity to diet-induced obesity and insulin resistance in mice lacking 4E-BP1 and 4E-BP2. J Clin Invest 117(2):387–396

    Article  PubMed  CAS  Google Scholar 

  86. Koketsu Y, Sakoda H, Fujishiro M et al (2008) Hepatic overexpression of a dominant negative form of raptor enhances Akt phosphorylation and restores insulin sensitivity in K/KAy mice. Am J Physiol Endocrinol Metab 294(4):E719–E725

    Article  CAS  Google Scholar 

  87. Prada PO, Hirabara SM, de Souza CT et al (2007) L-glutamine supplementation induces insulin resistance in adipose tissue and improves insulin signalling in liver and muscle of rats with diet-induced obesity. Diabetologia 50(9):1949–1959

    Article  PubMed  CAS  Google Scholar 

  88. Calvert VS, Collantes R, Elariny H et al (2007) A systems biology approach to the pathogenesis of obesity-related nonalcoholic fatty liver disease using reverse phase protein microarrays for multiplexed cell signaling analysis. Hepatology 46(1):166–172

    Article  PubMed  CAS  Google Scholar 

  89. Vinciguerra M, Veyrat-Durebex C, Moukil MA et al (2008) PTEN down-regulation by unsaturated fatty acids triggers hepatic steatosis via an NF-kappaBp65/mTOR-dependent mechanism. Gastroenterology 134(1):268–280

    Article  PubMed  CAS  Google Scholar 

  90. Polesel J, Zucchetto A, Montella M et al (2008) The impact of obesity and diabetes mellitus on the risk of hepatocellular carcinoma. Ann Oncol 20:353–357

    Article  PubMed  Google Scholar 

  91. Amarapurkar DN, Patel ND, Kamani PM (2008) Impact of diabetes mellitus on outcome of HCC. Ann Hepatol 7(2):148–151

    PubMed  Google Scholar 

  92. Donadon V, Balbi M, Casarin P et al (2008) Association between hepatocellular carcinoma and type 2 diabetes mellitus in Italy: potential role of insulin. World J Gastroenterol 14(37):5695–5700

    Article  PubMed  CAS  Google Scholar 

  93. Sahin F, Kannangai R, Adegbola O et al (2004) mTOR and P70 S6 kinase expression in primary liver neoplasms. Clin Cancer Res 10(24):8421–8425

    Article  PubMed  CAS  Google Scholar 

  94. Sieghart W, Fuereder T, Schmid K et al (2007) Mammalian target of rapamycin pathway activity in hepatocellular ­carcinomas of patients undergoing liver transplantation. Transplantation 83(4):425–432

    Article  PubMed  CAS  Google Scholar 

  95. Baba HA, Wohlschlaeger J, Cicinnati VR et al (2009) Phosphorylation of p70S6 kinase predicts overall survival in patients with clear margin-resected hepatocellular carcinoma. Liver Int 29:399–405

    Article  PubMed  CAS  Google Scholar 

  96. Villanueva A, Chiang DY, Newell P et al (2008) Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastro­enterology 135:1972–1983, 1983.e1–11

    Google Scholar 

  97. Huynh H, Chow PK, Palanisamy N et al (2008) Beva­cizumab and rapamycin induce growth suppression in mouse models of hepatocellular carcinoma. J Hepatol 49(1):52–60

    Article  PubMed  CAS  Google Scholar 

  98. Ladu S, Calvisi DF, Conner EA et al (2008) E2F1 inhibits c-Myc-driven apoptosis via PIK3CA/Akt/mTOR and COX-2 in a mouse model of human liver cancer. Gastro­enterology 135:1322–1332

    Article  PubMed  CAS  Google Scholar 

  99. Huynh H, Chow KP, Soo KC et al (2008) RAD001 (everolimus) inhibits tumor growth in xenograft models of human hepatocellular carcinoma. J Cell Mol Med in press

    Google Scholar 

  100. Piguet AC, Semela D, Keogh A et al (2008) Inhibition of mTOR in combination with doxorubicin in an experimental model of hepatocellular carcinoma. J Hepatol 49(1):78–87

    Article  PubMed  CAS  Google Scholar 

  101. Wang Z, Zhou J, Fan J et al (2008) Effect of rapamycin alone and in combination with sorafenib in an orthotopic model of human hepatocellular carcinoma. Clin Cancer Res 14(16):5124–5130

    Article  PubMed  CAS  Google Scholar 

  102. Tam KH, Yang ZF, Lau CK et al (2008) Inhibition of mTOR enhances chemosensitivity in hepatocellular carcinoma. Cancer Lett 273:201–209

    Article  PubMed  CAS  Google Scholar 

  103. Lee JS, Chu IS, Mikaelyan A et al (2004) Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nat Genet 36(12):1306–1311

    Article  PubMed  CAS  Google Scholar 

  104. Motzer RJ, Escudier B, Oudard S et al (2008) Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372(9637):449–456

    Article  PubMed  CAS  Google Scholar 

  105. Awada A, Cardoso F, Fontaine C et al (2008) The oral mTOR inhibitor RAD001 (everolimus) in combination with letrozole in patients with advanced breast cancer: results of a phase I study with pharmacokinetics. Eur J Cancer 44(1):84–91

    Article  PubMed  CAS  Google Scholar 

  106. Yao JC, Phan AT, Chang DZ et al (2008) Efficacy of RAD001 (everolimus) and octreotide LAR in advanced low- to intermediate-grade neuroendocrine tumors: results of a phase II study. J Clin Oncol 26(26):4311–4318

    Article  PubMed  Google Scholar 

  107. O’Donnell A, Faivre S, Burris HA 3rd et al (2008) Phase I pharmacokinetic and pharmacodynamic study of the oral mammalian target of rapamycin inhibitor everolimus in patients with advanced solid tumors. J Clin Oncol 26(10): 1588–1595

    Article  PubMed  CAS  Google Scholar 

  108. Tabernero J, Rojo F, Calvo E et al (2008) Dose- and ­schedule-dependent inhibition of the mammalian target of rapamycin pathway with everolimus: a phase I tumor ­pharmacodynamic study in patients with advanced solid tumors. J Clin Oncol 26(10):1603–1610

    Article  PubMed  CAS  Google Scholar 

  109. Kovarik JM, Kahan BD, Kaplan B et al (2001) Longitudinal assessment of everolimus in de novo renal transplant recipients over the first post-transplant year: pharmacokinetics, exposure-response relationships, and influence on cyclosporine. Clin Pharmacol Ther 69(1):48–56

    Article  PubMed  CAS  Google Scholar 

  110. Tanaka C, O’Reilly T, Kovarik JM et al (2008) Identifying optimal biologic doses of everolimus (RAD001) in patients with cancer based on the modeling of preclinical and clinical pharmacokinetic and pharmacodynamic data. J Clin Oncol 26(10):1596–1602

    PubMed  CAS  Google Scholar 

  111. Rizell M, Andersson M, Cahlin C et al (2008) Effects of the mTOR inhibitor sirolimus in patients with hepatocellular and cholangiocellular cancer. Int J Clin Oncol 13(1):66–70

    Article  PubMed  CAS  Google Scholar 

  112. Thompson JE, Thompson CB (2004) Putting the rap on Akt. J Clin Oncol 22(20):4217–4226

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara C. Kozma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomas, H.E., Kozma, S.C. (2010). Targeting mTOR Signaling Pathways in Liver Disease. In: Dufour, JF., Clavien, PA. (eds) Signaling Pathways in Liver Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00150-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-00150-5_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-00149-9

  • Online ISBN: 978-3-642-00150-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics