Skip to main content

Circuits and Systems for the Synthesis of Chaotic Signals in Engineering Applications

  • Chapter
Intelligent Computing Based on Chaos

Part of the book series: Studies in Computational Intelligence ((SCI,volume 184))

Summary

This chapter discusses the problem of “chaos generation”, namely efficient techniques for the design of circuits to be employed as generators of chaotic signals (or sample sequences) in engineering applications.

As intelligent computing techniques exploiting chaotic dynamics take momentum, synthesisers of chaotic waveforms become important design primitives. Consequently, design approaches suitable for cost containment, high robustness, and low susceptibility to external interference need to be formalised. This topic is particularly significant since digital hardware can deliver dynamics matching the characteristics of chaotic models only in the short term, and truly chaotic behaviour needs analog subsystems, for which design efforts are higher.

The chapter opens with a concise history of chaotic circuits. This illustrates how the focus has progressively shifted from mere demonstrators to circuits and systems finally optimised for typical merit indexes of engineering applications. It is shown how the move from initial, mostly speculative designs to a real confrontation with emerging applications marked a key point in the design of “chaos generators”. On one hand it posed precise statistical requirements and on the other hand it let important implementation robustness issues emerge.

In the central part of the chapter, after a quick comparison of continuous-time vs discrete-time chaotic models, the focus goes on the latter. A brief review of techniques for their electronic implementation is presented illustrating how significant advantages can be obtained by concentrating on those that enable an efficient reuse of existing hardware. A discussion on how chaotic circuits can be derived from (ADCs) is presented.

In the last part of the chapter, the effectiveness of the proposed approach is proved by measurements made on real prototypes. This part is also the occasion to underline that for those applications requiring “true analog chaos” the ability to achieve it by building blocks ready available on most electronic systems can lead to a strategic advantage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. McCauley, J.L.: Chaos, Dynamics and Fractals. An algorithmic approach to deterministic chaos. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  2. Kocarev, L., Szczepanski, J., Amigo, J., Tomovski, I.: Discrete chaos — I: Theory. IEEE Transactions on Circuits and Systems—Part I: Regular Papers 53(6), 1300–1309 (2006)

    Article  MathSciNet  Google Scholar 

  3. Addabbo, T., Alioto, M., Fort, A., Rocchi, S., Vignoli, V.: Low-hardware complexity prbgs based on a piecewise-linear chaotic map. IEEE Transactions on Circuits and Systems—Part II: Express Briefs 53(5), 329–333 (2006)

    Article  MathSciNet  Google Scholar 

  4. Wolfram, S.: A new kind of science. Wolfram Media (2002)

    Google Scholar 

  5. Maxwell, J.C.: Essay for the Eranus Club on science and free will (1873)

    Google Scholar 

  6. Steiner, F.: Quantum chaos. Invited Contribution to the Festschrift Schlaglichter der Forschung: zum 75. Jahrestag der Universität Hamburg 1994 (1994), http://xxx.lanl.gov/ps/chao-dyn/9402001

  7. Van der Pol, B., Van der Mark, J.: Frequency demultiplication. Nature 120(3019), 363–364 (1927)

    Article  Google Scholar 

  8. Kennedy, M.P., Chua, L.O.: Van der Pol and chaos. IEEE Transactions on Circuits and Systems 33(10), 974–980 (1986)

    Article  MathSciNet  Google Scholar 

  9. Chua, L.O.: The genesis of Chua’s circuit, EECS Department, University of California, Berkeley, Tech. Rep. UCB/ERL M92/1 (1992), http://www.eecs.berkeley.edu/Pubs/TechRpts/1992/1924.html

  10. Rabinder, N.M. (ed.): Chua’s Circuit: a Paradigm for Chaos. Nonlinear Science. World Scientific, Singapore (1993)

    Google Scholar 

  11. Chua, L.O., Wu, C.W., Huang, A., Zhong, G.-Q.: A universal circuit for studying and generating chaos — Part I: Routes to chaos. IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications 40(10), 732–744 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Rodriguez-Vazquez, A.B., Huertas, J.L., Chua, L.: Chaos in a switched-capacitor circuit. IEEE Transactions on Circuits and Systems 32(10), 1083–1085 (1985)

    Article  MathSciNet  Google Scholar 

  13. Delgado-Restituto, M., Medeiro, F., Rodríguez-Vázquez, A.: Nonlinear, switched current CMOS IC for random signal generation. Electronics Letters 25, 2190–2191 (1993)

    Article  Google Scholar 

  14. Bernstein, G.M., Lieberman, M.A.: Secure random number generation using chaotic circuit. IEEE Transactions on Circuits and Systems 37(9), 1157–1164 (1990)

    Article  MathSciNet  Google Scholar 

  15. Callegari, S., Rovatti, R., Setti, G.: Robustness of chaos in analog implementations. In: Kennedy, M.P., Rovatti, R., Setti, G. (eds.) Chaotic Electronics in Telecommunications, ch. 12, pp. 397–442. CRC International Press, Boca Raton (2000)

    Google Scholar 

  16. Delgado-Restituto, M., Rodriguez-Vazquez, A.: Integrated chaos generators. Proceedings of the IEEE 90(5), 747–767 (2002)

    Article  Google Scholar 

  17. Gerosa, A., Bernardini, R., Pietri, S.: A fully integrated chaotic system for the generation of truly random numbers. IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications 49(7), 993–1000 (2002)

    Article  Google Scholar 

  18. Callegari, S., Rovatti, R., Setti, G.: Embeddable ADC-based true random number generator for cryptographic applications exploiting nonlinear signal processing and chaos. IEEE Transactions on Signal Processing 53(2), 793–805 (2005)

    Article  MathSciNet  Google Scholar 

  19. Ott, E.: Chaos in dynamical systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  20. Setti, G., Mazzini, G., Rovatti, R., Callegari, S.: Statistical modeling of discrete time chaotic processes: Basic finite dimensional tools and applications. Proceedings of the IEEE 90(5), 662–690 (2002)

    Article  Google Scholar 

  21. Lasota, A., Mackey, M.C.: Chaos, Fractals and Noise. Stochastic Aspects of Dynamics, 2nd edn. Springer, Heidelberg (1995)

    Google Scholar 

  22. Chua, L.O., Wu, C.W., Huang, A., Zhong, G.-Q.: A universal circuit for studying and generating chaos — Part II: Strange attractors. IEEE Transactions on Circuits and Systems—Part I: Fundamental Theory and Applications 40(10), 745–761 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Yalcin, M.E., Suykens, J.A.K., Vandewalle, J.: True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits and Systems—Part I: Regular Papers 51(7), 1395–1404 (2004)

    Article  MathSciNet  Google Scholar 

  24. Tamasevicius, A., Bumeliene, S., Lindberg, E.: Improved chaotic Colpitts oscillator for ultrahigh frequencies. Electronics Letters 40(25), 1569–1570 (2004)

    Article  Google Scholar 

  25. Schwarz, W., Götz, M., Kelber, K., Abel, A., Falk, T., Dachselt, F.: Statistical analysis and design of chaotic systems. In: Kennedy, M.P., Rovatti, R., Setti, G. (eds.) Chaotic Eletronics in Telecommunications, ch. 9. CRC International Press, Boca Raton (2000)

    Google Scholar 

  26. Kuta, S.: Current mode circuit implementations of PWL functions. Analog Integrated Circuits and Signal Processing (16), 285–297 (1998)

    Google Scholar 

  27. Toumazou, C., Lidgey, F.J., Haigh, D.G. (eds.): Analog IC Design: the Current Mode Approach. Peter Peregrinus Ltd., London (1990)

    Google Scholar 

  28. Callegari, S., Rovatti, R., Setti, G.: Generatore di numeri autenticamente casuali con possibilitá di operazione riconfigurabile tra generatore di numeri autenticamente casuali e convertitore analogico-digitale, Italian Patent application for industrial invention BO2007A000 364 (May 2007)

    Google Scholar 

  29. Callegari, S.: Some more robustness conditions for the invariant density of a class of 1D maps under additive noise. In: Proc. of ECCTD, pp. 1038–1041 (September 2007)

    Google Scholar 

  30. Stojanovski, T., Kocarev, L.: Chaos-based random number generators — Part I: Analysis. IEEE Transactions on Circuits and Systems, Part I 48(3), 281–287 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  31. Knuth, D.E.: The Art Of Computer Programming, 2nd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1982); random numbers

    Google Scholar 

  32. Pareschi, F., Rovatti, R., Setti, G.: Simple and effective post-processing stage for random stream generated by a chaos-based RNG. In: Proceedings of NOLTA 2006, Bologna - IT: IEICE, pp. 383–386 (September 2006)

    Google Scholar 

  33. Razavi, B.: Principles of Data Conversion System Design. Wiley — IEEE Press (1994)

    Google Scholar 

  34. Callegari, S., Rovatti, R., Setti, G.: Circuito elettronico riconfigurabile come convertitore analogico/digitale e generatore di sequenze binarie autenticamente casuali, Italian Patent application for industrial invention BO2005A000 060 (Feburary 2005)

    Google Scholar 

  35. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  36. Barker, E., Kelsey, J.: Recommendation for Random Number Generation Using Deterministic Random Bit Generators, National Institute for Standards and Technology Special publication 800-90 (June 2006), http://csrc.nist.gov/publications/nistpubs/800-90/SP800-90DRBG_June2006.pdf

  37. Secure Hash Standard, National Institute for Standards and Technology Std. Federal Information Processing Standards FIPS 180-2 (August 2002), http://www.itl.nist.gov/fipspubs/by-num.htm

  38. Kennedy, M.P., Rovatti, R., Setti, G. (eds.): Chaotic Electronics in Telecommunications. CRC International Press, Boca Raton (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pareschi, F., Callegari, S., Setti, G., Rovatti, R. (2009). Circuits and Systems for the Synthesis of Chaotic Signals in Engineering Applications. In: Kocarev, L., Galias, Z., Lian, S. (eds) Intelligent Computing Based on Chaos. Studies in Computational Intelligence, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95972-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-95972-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-95971-7

  • Online ISBN: 978-3-540-95972-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics