Skip to main content

Use of Mycorrhiza Bioassays in Ecological Studies

  • Chapter
  • First Online:
Symbiotic Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 18))

Abstract

Mycorrhizal bioassays measure the infectivity of arbuscular mycorrhizal (AM) fungal propagules in soil at one point of time, or over time if sequential harvests are included. However, the bioassay environment may not be the same as field conditions. Therefore, it is possible that fungi are infective under bioassay conditions but not in the field. This discrepancy may be due to differences in the physiological state of roots, to the use of bait plants in the bioassay that are not the same species as the plants growing in the field, or to changes in the competitive ability of the AM fungi in the bioassay compared to that in the field environment. Bioassays have the potential to assist in predicting how roots might become colonized in field soils, but calibrations are necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK (1982) Comparative anatomy of vesicular–arbuscular mycorrhizas formed on subterranean clover. Aust J Bot 30:485–499

    Article  Google Scholar 

  • Abbott LK, Robson AD (1981) Infectivity and effectiveness of five endomycorrhizal fungi: competition with indigenous fungi in field soils. Aust J Soil Res 32:621–630

    Google Scholar 

  • Abbott LK, Robson AD (1982) Infectivity of vesicular arbuscular mycorrhizal fungi in agricultural soils. Aust J Agric Res 33:1049–1059

    Article  Google Scholar 

  • Abbott LK, Robson AD (1984) Colonisation of the root system of subterranean clover by three species of vesicular–arbuscular fungi. New Phytol 96:275–281

    Article  Google Scholar 

  • Abbott LK, Robson AD (1991a) Field management of VA mycorrhizal fungi. In: Kelster DL, Cregan PB (eds) The Rhizosphere and Plant Growth. Kluwer, Norwell, MA, pp 355–362

    Google Scholar 

  • Abbott LK, Robson AD (1991b) Factors influencing the occurrence of vesicular–arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Article  Google Scholar 

  • Abbott LK, Robson AD, Scheltema MA (1995) Managing soils to enhance mycorrhizal benefits in mediterranean agriculture. Crit Rev Biotechnol 15:213–228

    Article  Google Scholar 

  • Arias I, Sainz MJ, Grace CA, Hayman DS (1987) Direct observation of vesicular–arbuscular mycorrhizal infection in fresh unstained roots. Trans Br Mycol Soc 89:128–131

    Article  Google Scholar 

  • Auge RM (2001) Water relations, drought and vesicular–arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Boerner REJ, DeMars BG, Leight PN (1996) Spatial patterns of mycorrhizal infectiveness of soils along a successional chronosequence. Mycorrhiza 6:79–80

    Article  Google Scholar 

  • Boomsma CR, Vyn TJ (2008) Maize drought tolerance: potential improvements through arbuscular mycorrhizal symbiosis? Field Crops Res 108:14–31

    Article  Google Scholar 

  • Brundrett M (1991) Mycorrhizas in natural ecosystems. Adv Ecol Res 21:171–313

    Article  Google Scholar 

  • Brundrett M (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett M, Abbott LK (1995) Mycorrhizal fungus propagules in the jarrah forest. 2. Spatial variability in inoculum levels. New Phytol 131:461–469

    Article  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular–arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  • Brundrett MC, Ashwath N, Jasper DA (1996) Mycorrhizas in the Kakadu region of tropical Australia. 2. Propagules of mycorrhizal fungi in disturbed habitats. Plant Soil 184:173–184

    Article  Google Scholar 

  • Cardoso IM, Kuyper TW (2006) Mycorrhizas and tropical soil fertility. Agric Ecosyst Environ 116:72–84

    Article  Google Scholar 

  • Crush JR (1978) Changes in effectiveness of soil endomycorrhizal fungal populations during pasture development. N Z J Agric Res 21:683–685

    Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393

    Article  CAS  PubMed  Google Scholar 

  • Djuuna IAF (2006) The infectivity of arbuscular mycorrhizal fungi in relation to soil characteristics and agricultural land use history. PhD thesis, School of Earth and Geographical Sciences, The University of Western Australia, Perth, Australia

    Google Scholar 

  • Dodd JC, Boddington CL, Rodriguez A, Gonzalez-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant Soil 226:131–151

    Article  CAS  Google Scholar 

  • Douds DDJ, Johnson NC (2003) Contributions of arbuscular mycorrhizas to soil biological fertility. In: Abbott LK, Murphy DV (eds) Soil biological fertility — a key to sustainable land use in agriculture. Kluwer, Dordrecht, pp 129–162

    Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77:527–544

    Article  Google Scholar 

  • Evans DG, Miller MH (1990) The role of the external mycelial network in the effect of soil disturbance upon vesicular–arbuscular mycorrhizal colonisation of maize. New Phytol 114:65–72

    Article  Google Scholar 

  • Gerdemann JW (1975) Vesicular–arbuscular mycorrhizae. In: Torrey JG and Clarkson DT (eds) The development and function of roots. Academic, London, pp 575–591

    Google Scholar 

  • Gazey C, Abbott LK, Robson AD (1992) The rate of development of mycorrhizas affects the onset of sporulation and production of external hyphae by two species of Acaulospora. Mycol Res 96:643–650

    Article  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Trouvelor A (1985) Evaluation of the infectivity and effectiveness of indigenous vesicular–arbuscular fungal populations in some agricultural in Burgundy. Can J Bot 63:1521–1524

    Google Scholar 

  • Helgason T, Daniel TJ, Husband R, Fitter AH, Young BD (1998) Ploughing up the wood-wide web. Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Hornby D (1990) Biological control of soil-borne plant pathogens. CAB International, Wallingford

    Google Scholar 

  • Jacobson KM (1997) Moisture and substrate stability determine VA-mycorrhizal fungal community distribution and structure in an arid grassland. J Arid Environ 35:59–75

    Article  Google Scholar 

  • Jacquot E, van Tuinen D, Gianinazzi S, Gianinazzi-Pearson V (2000) Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: application to the study of the impact of sewage sludge. Plant Soil 226:179–188

    Article  CAS  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1987) The effect of surface mining on the infectivity of vesicular–arbuscular mycorrhizal fungi. Aust J Bot 35:641–652

    Article  Google Scholar 

  • Jasper DA, Robson AD, Abbott LK (1989) Soil disturbance reduces the infectivity of external hyphae of vesicular–arbuscular mycorrhizal fungi. New Phytol 112:93–99

    Article  Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1991) The effect of soil disturbance on vesicular arbuscular mycorrhizal fungi in soils from different vegetation types. New Phytol 118:471–476

    Article  Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: symbiotic mediators of rhizosphere and ecosystem processes. In: Cardon ZG, Whitbeck JL (eds) The rhizosphere: an ecological perspective. Academic, Amsterdam

    Google Scholar 

  • Kyllo DA, Velez V, Tyree MT (2003) Combined effects of arbuscular mycorrhizas and light on water uptake of the neotropical understory shrubs, Piper and Psychotria. New Phytol 160:443–454

    Article  Google Scholar 

  • Lackie SM, Garriock ML, Peterson RL, Bowley SR (1987) Influence of host plant on the morphology of the vesicular–arbuscular mycorrhizal fungus Glomus versiforme (Daniels and Trappe) Berch. Symbiosis 3:147–158

    Google Scholar 

  • Li HY, Smith SE, Ophel-Keller K, Holloway RE, Smith FA (2008) Naturally occurring arbuscular mycorrhizal fungi can replace direct P uptake by wheat when roots cannot access added P fertiliser. Funct Plant Biol 35:124–130

    Article  CAS  Google Scholar 

  • McDonald RM, Lewis M (1978) The occurrence of some acid phosphatases and dehydrogenases in the vesicular–arbuscular mycorrhizal fungus Glomus mosseae. New Phyto 80:135–140

    Article  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonizarion of roots by vesicular–arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Menge JA, Johnson ELV, Platt RG (1978) Mycorrhizal dependency of several citrus cultivars under three nutrient regimes. New Phytol 81:553–559

    Article  CAS  Google Scholar 

  • Merryweather JW, Fitter AH (1998) The arbuscular mycorrhizal fungi of Hyacinthoides non-scripta – I. Diversity of fungal taxa. New Phytol 138:117–129

    Google Scholar 

  • Miller MH, McGonigle TP, Addy HD (1995) Functional ecology of vesicular–arbuscular mycorrhizas as influenced by phosphate fertilization and tillage in an agricultural ecosystem. Crit Rev Biotechnol 15:241–255

    Article  Google Scholar 

  • Mohammad M, Pan WL, Kennedy AC (1995) Wheat responses to vesicular–arbuscular mycorrhizal fungal inoculation of soils from eroded toposequences. Soil Sci Soc Am J 59:1086–1090

    Article  CAS  Google Scholar 

  • Monzon A, Azcon R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Environ 60:9–15

    Article  Google Scholar 

  • Moreno-Espíndolaa IP, Rivera-Becerrilb F, Ferrara-Guerrerob MDJ, de Leon González F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil BiolBioch 39:2520–2526

    Article  CAS  Google Scholar 

  • Newman EI, Reddell P (1987) The distribution of mycorrhizas among families of vascular plants. New Phytol 106:745–751

    Article  Google Scholar 

  • Ortas I (1996) The influence of use of different rates of mycorrhizal inoculum on root infection, plant growth, and phosphorus uptake. Commun Soil Sci Plant Anal 27:2935–2946

    Article  CAS  Google Scholar 

  • Ortas I, Ortakci D, Kaya Z (2002) Various mycorrhizal fungi propagated on different hosts have different effect on citrus growth and nutrient uptake. Commun Soil Sci Plant Anal 33:259–272

    Article  CAS  Google Scholar 

  • Pankova H, Munzbergova Z, Rydlova J, Vosatka M (2008) Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons. Oecologia 157:211–220

    Article  PubMed  Google Scholar 

  • Pearson JN, Schweiger P (1993) Scutelospora calospora (Nicol. and Gerd.) Walker and Sanders associated with subterranean clover: dynamics of colonisation, sporulation and soluble carbohydrates. New Phytol 124:215–219

    Article  Google Scholar 

  • Plenchette C, Perrin R, Duvert P (1989) The concept of soil infectivity and a method for its determination as applied to endomycorrhizas. Can J Bot 67:112–115

    Article  Google Scholar 

  • Puschel D, Rydlova J, Vosatka M (2007) Mycorrhiza influences plant community structure in succession on spoil banks. Basic Appl Ecol 8:510–520

    Article  Google Scholar 

  • Rafique R (2005) Salinity influences arbuscular mycorrhizal fungi in agricultural soil. PhD thesis, School of Earth and Geographical Sciences, The University of Western Australia, Perth, Australia

    Google Scholar 

  • Rillig MC, Mummery DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Saito M (1995) Enzyme activities of the internal hyphae and germinated spores of an arbuscular mydorrhizal fungus, Gigaspora margarita Becker and Hall. New Phytol 129:425–431

    Article  CAS  Google Scholar 

  • Saito M, Stribley DP, Hepper CM (1993) Succinate dehydrogenase activity of external and internal hyphae of a vesicular–arbuscular mycorrhizal fungus, Glomus mosseae (Nicol. and Gerd.) Gerdmann and Trappe during mycorrhizal colonisation of roots of leek (Alliu porrum L.), as revealed by in situ histochemical staining. Mycorrhiza 4:59–62

    Article  CAS  Google Scholar 

  • Sanders FE, Tinker PB, Black RLB, Palmerley SM (1977) The development of endonycorrhizal root systems. I. Spread of infection and growth-promoting effects with four species of vesicular–arbuscular endophytes. New Phytol 78:257–268

    Article  Google Scholar 

  • Scheltema MA, Abbott LK, Robson AD (1987) Seasonal-variation in the infectivity of VA mycorrhizal fungi in annual pastures in a Mediterranean environment. Aust J Agric Res 38:707–715

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular–arbuscular mycorrhizae management in tropical agrosystems. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Eschboran, p 371

    Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in (vesicular)–arbuscular mycorrhizal symbiosis. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Article  Google Scholar 

  • Solaiman MZ, Abbott LK (2003) Phosphorus uptake by a community of arbuscular mycorrhizal fungi in jarrah forest. Plant Soil 248:313–320

    Article  CAS  Google Scholar 

  • Solaiman MZ, Abbott LK (2004) Functional diversity of arbuscular mycorrhizal fungi on root surfaces. In: Varma AK, Abbott LK, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 331–349

    Google Scholar 

  • Stukenbrock EH, Rosendahl S (2005) Development and amplification of multiple co-dominant genetic markers from single spores of arbuscular mycorrhizal fungi by nested multiplex PCR. Fungal Genet Biol 42:73–80

    Article  CAS  PubMed  Google Scholar 

  • Tommerup IC (1983) Spore dormancy in vesicular arbuscular mycorrhizal fungi. Trans Br Mycol Soc 81:37–45

    Article  Google Scholar 

  • Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  CAS  Google Scholar 

  • Wubet T, Weiss M, Kottke I, Teketay D, Oberwinkler F (2004) Molecular diversity of arbuscular mycorrhizal fungi in Prunus africana, an endangered medicinal tree species in dry Afromontane forests of Ethiopia. New Phytol 161:517–528

    Article  CAS  Google Scholar 

  • Zangaro W, Bononi VLR, Trufen SB (2000) Mycorrhizal dependencyMycorrhizal dependency, inoculum potential and habitat preference of native woody species in South Brazil. J Trop Ecol 16:603–621

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Djuuna, I.A.F., Abbott, L.K., Solaiman, Z.M. (2009). Use of Mycorrhiza Bioassays in Ecological Studies. In: Varma, A., Kharkwal, A.C. (eds) Symbiotic Fungi. Soil Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95894-9_3

Download citation

Publish with us

Policies and ethics