Skip to main content

Interaction with Soil Microorganisms

  • Chapter
  • First Online:
Symbiotic Fungi

Part of the book series: Soil Biology ((SOILBIOL,volume 18))

Abstract

Plant roots form a part of a multitude of organismic interactions within the soil. Due to the release of organic compounds they attract diversified microbiological populations where fungi and bacteria can form distinct communities. In this root sphere (“rhizosphere”), fungi can be extremely helpful for the plant in facilitating the supply of water and nutrients (mycorrhiza), but also detrimental, if they act as pathogens (e.g., root-rot fungi). Rhizosphere bacteria (e.g., streptomycetes) can fine-tune such interactions by releasing compounds which have biocontrol effects (support of symbiotic fungi/mycorrhization; growth inhibition of pathogenic fungi), or which increase the resistance of the plant to pathogens (priming effect). In this chapter, methods are presented which allow for the investigation of such interactions for up to three partners under in vitro conditions. These culture techniques form the basis for investigating the molecular and physiological impacts of microbial interactions with each other and with the plant, including a nondestructive test of plant vitality via chlorophyll fluorescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Fattah GM, Mohamedin AH (2000) Interactions between a vesicular−arbuscular mycorrhizal fungus (Glomus intraradices) and Streptomyces coelicolor and their effects on sorghum plants grown in soil amended with chitin of brawn scales. Biol Fertil Soil 32:401–409

    Article  Google Scholar 

  • Agarwal AK, Rogers PD, Baerson SR, Jacob MR, Barker KS, Cleary JD, Walker LA, Nagle DG, Clark AM (2003) Genome-wide expression profiling of the response to polyene, pyrimidine, azole, and echinocandin antifungal agents in Saccharomyces cerevisiae. J Biol Chem 278:34998–35015

    Article  CAS  PubMed  Google Scholar 

  • Ames BN (1989) Mycorrhiza development in onion in response to chitin-decomposing actinomycetes. New Phytol 112:423–427

    Article  Google Scholar 

  • Andrade G, Mihara KL, Lindermann RG, Bethlenfalvay GJ (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular–mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Artursson V, Finlay RD, Jansson JK (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10

    Article  CAS  PubMed  Google Scholar 

  • Azcon R, Azcon G, de Aguilar C, Barea JM (1978) Effects of plant hormones present in bacterial cultures on the formation and responses to VA endomycorrhiza. New Phytol 80:359–364

    Article  CAS  Google Scholar 

  • Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Expt Bot 56:1761–1778

    Article  CAS  Google Scholar 

  • Bertaux J, Schmid M, Prevost-Boure NC, Churin JL, Hartmann A, Garbaye J, Frey-Klett P (2003) In situ identification of intracellular bacteria related to Paenibacillus spp. in the mycelium of the ectomycorrhizal fungus Laccaria bicolor S238N. Appl Environ Microbiol 69:4243–4248

    Article  CAS  PubMed  Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Tichy HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  PubMed  Google Scholar 

  • De Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  Google Scholar 

  • De Boer W, Wagenaar AM, Klein Gunnewiek PJ, van Veen JA (2007) In vitro suppression of fungi caused by combinations of apparently non-antagonistic soil bacteria. FEMS Microbiol Ecol 59:177–185

    Article  CAS  PubMed  Google Scholar 

  • Deveau A, Palin B, Delaruelle C, Peter M, Kohler A, Pierrat JC, Sarniguet A, Garbaye J, Martin F, Frey-Klett P (2007) The mycorrhiza helper Pseudomonas fluorescens BBc6R8 has a specific priming effect on the growth, morphology and gene expression of the ectomycorrhizal fungus Laccaria bicolor S238N. New Phytol 175:743–755

    Article  CAS  PubMed  Google Scholar 

  • Duponnois R, Kisa M (2006) The possible role of trehalose in the mycorrhiza helper effect. Can J Bot 84:1005–1008

    Article  Google Scholar 

  • Foster RC, Marks GC (1967) Observations on the mycorrhizas of forest trees. II. The rhizosphere of Pinus radiata D. Don. Aust J Biol Sci 20:915–926

    Google Scholar 

  • Founoune H, Duponnois R, Ba AM, Sall S, Branget I, Lorquin J, Neyra M, Chotte JL (2002) Mycorrhiza Helper Bacteria stimulated ectomycorrhizal symbiosis of Acacia holosericea with Pisolithus alba. New Phytol 153:81–89

    Article  Google Scholar 

  • Frey-Klett P, Chavatte M, Clausse M-L, Courrier S, Le Roux C, Raaijmakers J, Martinotti MG, Pierrat J-C, Garbaye J (2005) Ectomycorrhizal symbiosis affects functional diversity of rhizosphere fluorescent pseudomonads. New Phytol 165:317–328

    Article  PubMed  Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176: 22–36

    Article  CAS  PubMed  Google Scholar 

  • Garbaye J (1994) Mycorrhiza helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Gryndler M, Vosatka M (1996) The response of Glomus fistulosum-maize mycorrhiza to treatments with culture fractions from Pseudomonas putida. Mycorrhiza 6:207–211

    Article  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft 98:59–78

    Google Scholar 

  • Hirsch CF, Christensen DL (1983) Novel method for selective isolation of Actinomycetes. Appl Environ Microbiol 46:925–929

    CAS  PubMed  Google Scholar 

  • Hobbie SE (1992) Effects of plant species on nutrient cycling. Trend Ecol Evol 7:336–339

    Article  Google Scholar 

  • Keller S, Schneider K, Süssmuth RD (2006) Structure elucidation of auxofuran, a metabolite involved in stimulating growth of fly agaric, produced by the mycorrhiza helper bacterium Streptomyces AcH 505. J Antibiot (Tokyo) 59:801–803

    CAS  Google Scholar 

  • Lehr NA, Schrey SD, Bauer R, Hampp R, Tarkka MT (2007) Suppression of plant defense response by a mycorrhiza helper bacterium. New Phytol 174:892–903

    Article  CAS  PubMed  Google Scholar 

  • Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora — the mycorrhizosphere effect. Phytopathology 78:366–371

    Google Scholar 

  • Maier A (2003) Einfluss bakterieller Stoffwechselprodukte auf Wachstum und Proteom des Ektomykorrhizapilzes Amanita muscaria. PhD thesis, Faculty of Biology, University of Tübingen, Germany

    Google Scholar 

  • Maier A, Riedlinger J, Fiedler H-P, Hampp R (2004) Actinomycetales bacteria from a spruce stand: characterisation and effects on growth of root symbiotic and plant parasitic soil fungi in dual culture. Mycol Prog 3:129–136

    Article  Google Scholar 

  • Melin P, Schnurer J, Wagner EG (1999) Changes in Aspergillus nidulans gene expression induced by bafilomycin, a Streptomyces-produced antibiotic. Microbiology 145:1115–1122

    Article  CAS  PubMed  Google Scholar 

  • Melin P, Schnurer J, Wagner EG (2002) Proteome analysis of Aspergillus nidulans reveals proteins associated with the response to the antibiotic concanamycin A, produced by Streptomyces species. Mol Genet Genomics 267:695–702

    Article  CAS  PubMed  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenk NC (ed) Methods and principles of mycorrhizal research. The American Phytopathological Society, St Paul, MN, pp 115–129

    Google Scholar 

  • Nurmiaho-Lassila EL, Timonen S, Haahtela K, Sen R (1997) Bacterial colonization pattern of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: an electron microscopy study. Can J Microbiol 43:1017–1035

    Article  CAS  Google Scholar 

  • Nehls U, Ecke M, Hampp R (1999) Sugar- and nitrogen-dependent regulation of an Amanita muscaria phenylalanine ammonium lyase gene. J Bacteriol 181:1931–1933

    Google Scholar 

  • Poole EJ, Bending GD, Whipps JM, Read DJ (2001) Bacteria associated with Pinus sylvestris-Lactarius rufus ectomycorrhizas and their effects on mycorrhiza formation in vitro. New Phytol 151:743–751

    Article  Google Scholar 

  • Riedlinger JM, Schrey SD, Tarkka MT, Hampp R, Kapur M, Fielder HP (2006) Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505. Appl Environ Microbiol 72:3550–3557

    Article  CAS  PubMed  Google Scholar 

  • Rovira AD (1991) Rhizosphere research — 85 years of progress and frustration. In: Kleister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Amsterdam, pp 3–13

    Google Scholar 

  • Schaeffer C, Johann P, Nehls U, Hampp R (1996) Evidence for an up-regulation of the host and down-regulation of the fungal phosphofructokinase activity in ectomycorrhizas of Norway spruce and fly agaric. New Phytol 134:697–702

    Article  CAS  Google Scholar 

  • Schreiber U (2004) Pulse-amplitude-modulation (PAM) fluorometry and saturation pulse method: an overview. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence: a signature of photosynthesis. Advances in photosynthesis and respiration, vol 19. Springer, Dordrecht, pp 279–319

    Google Scholar 

  • Schrey SD, Schellhammer M, Ecke M, Hampp R, Tarkka MT (2005) Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol 168:205–216

    Article  CAS  PubMed  Google Scholar 

  • Schrey SD, Salo V, Raudaskoski M, Hampp R, Nehls U, Tarkka MT (2007) Interaction with mycorrhiza helper bacterium Streptomyces sp. AcH 505 modifies organisation of actin cytoskeleton in the ectomycorrhizal fungus Amanita muscaria (fly agaric). Curr Genet 52:77–85

    Article  CAS  PubMed  Google Scholar 

  • Shirling EB, Gottlieb D (1966) Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340

    Article  Google Scholar 

  • Slattery M, Rajbhandari I, Wesson K (2001) Competition-mediated antibiotic induction in the marine bacterium Streptomyces tenjimariensis. Microbial Ecol 41:90–96

    CAS  Google Scholar 

  • Smalla K, Wieland G, Buchner A, Zock A, Parzy J, Kaiser S, Roskot N, Heuer H, Berg G (2001) Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl Environm Microbiol 67:4742–4751

    Google Scholar 

  • Tarkka MT, Hampp R (2008) Secondary metabolites of soil streptomycetes in biotic interactions. In: Karlovsky P (ed) Secondary metabolites in soil ecology. Soil Biology, vol 14. Springer, Heidelberg, pp 107–128

    Chapter  Google Scholar 

  • Tarkka MT, Schrey S, Nehls U (2006) The alpha-tubulin gene AmTuba1: a marker for rapid mycelial growth in the ectomycorrhizal basidiomycete Amanita muscaria. Curr Genet 49:294–301

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Hampp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hampp, R., Tarkka, M.T. (2009). Interaction with Soil Microorganisms. In: Varma, A., Kharkwal, A.C. (eds) Symbiotic Fungi. Soil Biology, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-95894-9_12

Download citation

Publish with us

Policies and ethics