Skip to main content

Comparative Aspects of Hypoxia Tolerance of the Ectothermic Vertebrate Heart

  • Chapter
  • First Online:
Cardio-Respiratory Control in Vertebrates

Abstract

This chapter reviews cardiac contractile performance and its regulation during hypoxia/anoxia with regard to cellular metabolism and energy state, in particular hypoxia-tolerant ectothermic vertebrates. Overall the contractile performance of the hypoxic isolated heart muscle varies in a way that relates to the occurrence of hypoxia/anoxia in the natural life of the animal. The hypoxic/anoxic performance of the heart muscle correlates positively with the glycolytic capacity relative to the aerobic capacity, and this performance also tends to be high in hearts having a low aerobic or maximal working capacity. Indirect evidence suggests a particular role for creatine kinase, and that mechanical efficiency may increase in some species. Despite the restricted energy production, hypoxic/anoxic performance is often strongly stimulated by agents such as adrenaline. Frequently, mechanical performance is reduced less by the oxygen lack itself than by factors commonly associated with it, such as increases in extracellular K+.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D.G., Morris, P.G., Orchard, C.H. and Pirolo, J.S. (1985) A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. J. Physiol. 361: 185–204.

    PubMed  CAS  Google Scholar 

  • Andersen, J.B., Gesser, H. and Wang, T. (2004) Acidosis counteracts the negative inotropic effect of K+ on ventricular muscle strips from the toad Bufo marinus. Physiol. Biochem. Zool. 77: 223–231.

    Article  PubMed  CAS  Google Scholar 

  • Andrienko, T., Kuznetsov, A.V., Kaambre, T., Usson, Y., Orosco, A., Appaix, F., Tiivel, T., Sikk, P., Vendelin, M., Margreiter, R. and Saks, V.A. (2003) Metabolic consequences of functional complexes of mitochondria, myofibrils and sarcoplasmic reticulum in muscle cells. J. Exp. Biol. 206: 2059–2072.

    Article  PubMed  CAS  Google Scholar 

  • Baker, J.E., Konorev, E.A., Gross, G.J., Chilian, W.M. and Jacob, H.J. (2000) Resistance to myocardial ischemia in five rat strains: is there a genetic component of cardioprotection? Am. J. Physiol. 278: H1395–H1400.

    CAS  Google Scholar 

  • Ball, D.C. and Hicks, J.W. (1996) Adrenergic and cholinergic response of ventricular muscle from the turtle. Trachemys (Pseudemys) scripta. Comp. Biochem. Physiol. A. 113: 135–141.

    Article  CAS  Google Scholar 

  • Battiprolu, P.K., Harmon, K.J. and Rodnick, K.J. (2007) Sex differences in energy metabolism and performance of teleost cardiac tissue. Am. J. Physiol. 292: R827–R836.

    CAS  Google Scholar 

  • Bers, D.M. (2002) Cardiac excitation–contraction coupling. Nature. 415: 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Birkedal, R. and Gesser, H. (2004) Effects of hibernation on mitochondrial regulation and metabolic capacities in myocardium of painted turtle (Chrysemys picta). Comp. Biochem. Physiol. A. 139: 285–291.

    Article  CAS  Google Scholar 

  • Birkedal, R. and Gesser, H. (2006) Intracellular compartmentation of cardiac fibres from rainbow trout and Atlantic cod — a general design of heart cells. Biochim. Biophys. Acta. 1757: 764–772.

    Article  PubMed  CAS  Google Scholar 

  • Bobb, V.T. and Jackson, D.C. (2005) Effect of graded hypoxic and acidotic stress on contractile force of heart muscle from hypoxia-tolerant and hypoxia-intolerant turtles. Exp Zool. A. 303: 345–353.

    Article  Google Scholar 

  • Boutilier, R.G. (2001) Mechanisms of cell survival in hypoxia and hypothermia. J. Exp. Biol. 204: 3171–3181.

    PubMed  CAS  Google Scholar 

  • Boutilier, R.G. and St-Pierre, J. (2000) Surviving hypoxia without really dying. Comp. Biochem. Physiol. A. 126: 481–490.

    Article  CAS  Google Scholar 

  • Bowser, D., Minamikawa, N.T., Nagley, P. and Williams, D.A. (1998) Role of mitochondria in calcium regulation of spontaneously contracting muscle cells. Biophys. J. 75: 2004–2014.

    Article  PubMed  CAS  Google Scholar 

  • Brand, M.D. (2005) The efficiency and plasticity of mitochondrial energy transduction. Biochem. Soc. Trans. 33: 897–904.

    Article  Google Scholar 

  • Buck, L., Espanol, M., Litt, L. and Bickler, P. (1998) Reversible decreases in ATP and PCr concentrations in anoxic turtle brain. Comp. Biochem. Physiol. A. 120: 633–639.

    CAS  Google Scholar 

  • Cameron, J.S., Hoffmann, K.E., Zia, C., Hemmett, H.M., Kronsteiner, A. and Lee, C.M. (2003) A role for nitric oxide in hypoxia-induced activation of cardiac KATP channels in goldfish (Carassius auratus). J. Exp. Biol. 206: 4057–4065.

    Article  PubMed  CAS  Google Scholar 

  • Chang, J., Knowlton, A.A. and Wasser, J.S. (2000) Expression of heat shock proteins in turtle and mammal hearts: relationship to anoxia tolerance. Am. J. Physiol. 278: R209–R214.

    CAS  Google Scholar 

  • Chen, J., Zhu, J.X., Wilson, I. and Cameron, J.S. (2005) Cardioprotective effects of K ATP channel activation during hypoxia in goldfish Carassius auratus. J. Exp. Biol. 208: 2765–2772.

    Article  PubMed  CAS  Google Scholar 

  • Christensen, M., Hartmund, T., Gesser, H. (1994) Creatine kinase, energy-rich phosphates and energy metabolism in heart muscle of different vertebrates. J. Comp. Physiol. B. 164: 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Cooke, R. and Pate, E. (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys. J. 48: 789–798.

    Article  PubMed  CAS  Google Scholar 

  • Crampin, E.J. and Smith, N.P. (2006) A dynamic model of excitation–contraction coupling during acidosis in cardiac ventricular myocytes. Biophys. J. 90: 3074–3090.

    Article  PubMed  CAS  Google Scholar 

  • Davie, P.S. and Farrell, A.P. (1991) The coronary and luminal circulation of the fishes. Can. J. Zool. 69: 1993–2000.

    Article  Google Scholar 

  • Driedzic, W.R., Sidell, B.D., Stowe, D. and Branscombe, R. (1987) Matching of vertebrate cardiac energy demand to energy metabolism. Am. J. Physiol. 252: R930–R937.

    PubMed  CAS  Google Scholar 

  • Driedzic, W.R. and Gesser, H. (1994) Energy metabolism and contractility in ectothermic vertebrate hearts: hypoxia, acidosis and low temperature. Physiol. Rev. 79: 635–659.

    Google Scholar 

  • Dröse, S., Brandt, U. and Hanley, P.J. (2006) K+-independent actions of diazoxide question the role of inner membrane K ATP channels in mitochondrial cytoprotective signaling. J Biol Chem. 281: 23733–23739.

    Article  PubMed  CAS  Google Scholar 

  • Farrar, R.S., Battiprolu, P.K., Pierson, N.S. and Rodnick, K.J. (2006) Steroid-induced cardiac contractility requires exogenous glucose, glycolysis and the sarcoplasmic reticulum in rainbow trout. J. Exp. Biol. 209: 2114–2128.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, A.P. and Clutterham, S.M. (2003) On-line venous oxygen tensions in rainbow trout during graded exercise at two acclimation temperatures. J. Exp. Biol. 206: 487–496.

    Article  PubMed  CAS  Google Scholar 

  • Farrell, A.P. and Stecyk, J.A.W. (2007) The heart as a working model to explore themes and strategies for anoxic survival in ectothermic vertebrates. Comp. Biochem. Physiol. A. 147: 300–312.

    Article  CAS  Google Scholar 

  • Faust, H.A., Gamperl, A.K. and Rodnick, K.J. (2004) All rainbow trout (Oncorhynchus mykiss) are not created equal: intra-specific variation in cardiac hypoxia tolerance. J. Exp. Biol. 207: 1005–1015.

    Article  PubMed  Google Scholar 

  • Fukuda, N., O-Uchi, J., Sasaki, D., Kajiwara, H., Ishiwata, S. and Kurihara, S. (2001) Acidosis or inorganic phosphate enhances the length dependence of tension in rat skinned cardiac muscle. J. Physiol. 536: 153–160.

    Article  PubMed  CAS  Google Scholar 

  • Galli, G.L., Gesser, H., Taylor, E.W., Shiels, H.A. and Wang, T. (2006a) The role of the sarcoplasmic reticulum in the generation of high heart rates and blood pressures in reptiles. J. Exp. Biol. 209: 1956–1963.

    Article  Google Scholar 

  • Galli, G.L., Taylor, E.W. and Shiels, H.A. (2006b) Calcium flux in turtle ventricular myocytes. Am. J. Physiol. 291: R1781–R1789.

    CAS  Google Scholar 

  • Gesser, H. (1977) The effects of hypoxia and reoxygenation on force development in myocardia of carp and rainbow trout: protective effects of CO2/HCO3. J. Exp. Biol. 69: 199–206.

    PubMed  CAS  Google Scholar 

  • Gesser, H. (2002) Mechanical performance and glycolytic requirement in trout ventricular muscle. J. Exp. Zool. 293: 360–367.

    Article  PubMed  CAS  Google Scholar 

  • Gesser, H. (2006) Force development at elevated [Mg2+]o and [K+]0 in myocardium from the freshwater turtle (Trachemys scripta) and influence of factors associated with hibernation. Comp. Biochem. Physiol. A. 145: 334–339.

    Article  CAS  Google Scholar 

  • Gesser, H. and Poupa, O. (1974) Relations between heart muscle enzyme pattern and directly measured tolerance to acute anoxia. Comp. Biochem. Physiol. 48: 97–103.

    Article  CAS  Google Scholar 

  • Gesser, H. and Poupa, O. (1978) The role of intracellular Ca2+ under hypercapnic acidosis of cardiac muscle: comparative aspects. J. Comp. Physiol. B. 127: 301–313.

    Article  Google Scholar 

  • Gesser, H., Andresen, P., Brams, P. and Sundlarsen, J. (1982) Inotropic effects of adrenaline on the anoxic or hypercapnic myocardium of rainbow trout and eel. J. Comp. Physiol. 147: 123–128.

    CAS  Google Scholar 

  • Gesser, H. and Jørgensen, E. (1982) pHi, contractility and Ca-balance under hypercapnic acidosis in the myocardium of different vertebrate species. J. Exp. Biol. 96: 405–412.

    PubMed  CAS  Google Scholar 

  • Gesser, H. and Poupa, O. (1983) Acidosis and cardiac muscle contractility: comparative aspects. Comp. Biochem. Physiol A. 76: 559–566.

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, C.L. (2003) Cardiac energetics: sense and nonsense. Clin. Exp. Pharmacol. Physiol. 30: 598–603.

    Article  PubMed  CAS  Google Scholar 

  • Gnaiger, E. (2001) Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply. Respir. Physiol. 128: 277–297.

    Article  PubMed  CAS  Google Scholar 

  • Godt, R.E. and Nosek, T.M. (1989) Changes of intracellular milieu with fatigue or hypoxia depress contraction of skinned rabbit skeletal and cardiac muscle. J. Physiol. 412: 155–180.

    PubMed  CAS  Google Scholar 

  • Hansen, C.A. and Sidell, B.D. (1983) Atlantic hagfish cardiac muscle: metabolic basis of tolerance to anoxia. Am. J. Physiol. 244: R356–R362.

    PubMed  CAS  Google Scholar 

  • Hardie, D.G. (2000) Metabolic control: a new solution to an old problem. Curr. Biol. 10:R757–R759.

    Article  PubMed  CAS  Google Scholar 

  • Hartmund, T. and Gesser, H. (1996) Cardiac force and high-energy phosphates under metabolic inhibition in four ectothermic vertebrates. Am. J. Physiol. 271: R946–R954.

    PubMed  CAS  Google Scholar 

  • Hicks, J.W. and Wang, T. (1998) Cardiovascular regulation during anoxia in the turtle: an in vivo study. Physiol. Zool. 71: 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P.W. (1986) Defense strategies against hypoxia and hypothermia. Science 231:234–241.

    Article  PubMed  CAS  Google Scholar 

  • Hochachka, P.W., Buck, L.T., Doll, C.J. and Land, S.C. (1996) Unifying theory of hypoxia tolerance: molecular/metabolic defense and rescue mechanisms for surviving oxygen lack. Proc. Nat. Acad. Sci. U. S. A. 93: 9493–9498.

    Article  CAS  Google Scholar 

  • Holmuhamedov, E.L., Jovanovic, S., Dzeja, P.P., Jovanovic, A. and Terzic, A. (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am. J. Physiol. 275: H1567–H1576.

    PubMed  CAS  Google Scholar 

  • Hove-Madsen, L., Llach, A., Tibbits, G.F. and Tort, L. (2003) Triggering of sarcoplasmic reticulum Ca2+ release and contraction by reverse mode Na+/Ca2+ exchange in trout atrial myocytes. Am. J. Physiol. 284: R1330–R1339.

    CAS  Google Scholar 

  • Jackson, D.C. (1968) Metabolic depression and oxygen depletion in diving turtle. J. Appl. Physiol. 24: 503–509.

    PubMed  CAS  Google Scholar 

  • Jackson, D.C. (1987) Cardiovascular function in turtles during anoxia and acidosis: in vivo and in vitro studies. Amer. Zool. 27: 49–58.

    Google Scholar 

  • Jackson, D.C. (2000) Living without oxygen: lessons from the freshwater turtle. Comp. Biochem. Physiol. A. 125: 299–315.

    Article  CAS  Google Scholar 

  • Jackson, D.C. (2002) Hibernating without oxygen: the painted turtle. J. Physiol. 543: 731–737.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D.C. and Heisler, N. (1982) Plasma ion balance of submerged anoxic turtles at 3°C. Respir. Physiol. 49: 159–174.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, D.C. and Ultsch, G.R. (1982) Long-term submergence at 3°C of the turtle Chrysemys picta bellii, in normoxic and severely hypoxic water: II. Extracellular ionic responses to extreme lactic acidosis. J. Exp. Biol. 96: 29–43.

    CAS  Google Scholar 

  • Jackson, D.C., Shi, H., Singer, J.H., Hamm, P.H. and Lawler, R.G. (1995) Effects of input pressure on in vitro turtle heart during anoxia and acidosis: a 31P-NMR study. Am. J. Physiol. 268: R683–R689.

    PubMed  CAS  Google Scholar 

  • Jarmakani, J.M., Nakazawa, M., Nagatomo, T. and Langer, G.A. (1978) Effect of hypoxia on mechanical function in the neonatal mammalian heart. Am. J. Physiol. 235: H469–H474.’

    PubMed  CAS  Google Scholar 

  • Jensen, M. and Gesser, H. (1999) Influence of inorganic phosphate and energy state on force in skinned cardiac muscle from freshwater turtle and rainbow trout. J. Comp Physiol. 169:439–444.

    CAS  Google Scholar 

  • Joseph, T., Coirault, C. and Lecarpantier, Y. (2000) Species-dependent changes in mechano-energetics of isolated cardiac muscle during hypoxia. Basic Res. Cardiol. 95: 378–384.

    Article  PubMed  CAS  Google Scholar 

  • Kalinin, A. and Gesser, H. (2002) Oxygen consumption and force development in turtle and trout cardiac muscle during acidosis and high extracellular potassium. J. Comp. Physiol. B. 172: 145–151.

    Article  PubMed  CAS  Google Scholar 

  • Kammermeier, H. (1997) Myocardial cell energetics. Adv. Exp. Med. Biol. 430: 89–96.

    Article  PubMed  CAS  Google Scholar 

  • Keiver, K.M., Weinberg, J. and Hochachka, P.W. (1992) Roles of catecholamines and corticosterone during anoxia and recovery at 5°C in turtle. Am. J. Physiol. 263: R770–R774.

    PubMed  CAS  Google Scholar 

  • Kitazawa, T. (1984) Effect of extracellular calcium on contractile activation in guinea-pig ventricular muscle. J. Physiol. 355: 635–659.

    PubMed  CAS  Google Scholar 

  • Kockskamper, J., Zima, A.V. and Blatter, L.A. (2005) Modulation of sarcoplasmic reticulum Ca2+ release by glycolysis in cat atrial myocytes. J. Physiol. 564: 697–714.

    Article  PubMed  CAS  Google Scholar 

  • Lehninger, A.L. (1970) Biochemistry. Worth, New York

    Google Scholar 

  • Lorenz, J.N. and Paul, R.J. (1997) Dependence of Ca2+ channel currents on endogenous and exogenous sources of ATP in portal vein smooth muscle. Am. J. Physiol. 272: H987–H994.

    PubMed  CAS  Google Scholar 

  • Lutz, P.L. and Nilsson, G.E. (1997) Contrasting strategies for anoxic brain survival — glycolysis up or down. J. Exp. Biol. 200: 411–419.

    PubMed  CAS  Google Scholar 

  • MacCormack, T.J. and Driedzic, W.R. (2002) Mitochondrial ATP-sensitive K+ channels influence force development and anoxic contractility in a flatfish, yellowtail flounder Limanda ferruginea, but not Atlantic cod Gadus morhua heart. J. Exp. Biol. 205: 1411–1418.

    PubMed  CAS  Google Scholar 

  • MacCormack, T.J. and Driedzic, W.R. (2007) The impact of hypoxia on in vivo glucose uptake in a hypoglycemic fish, Myoxocephalus scorpius. Am. J. Physiol. 292: R1033–R1042.

    CAS  Google Scholar 

  • Meyer, R.A. (1988) A linear model of muscle respiration explains monoexponential phosphocreatine changes. Am. J. Physiol. 254: C548–C533.

    PubMed  CAS  Google Scholar 

  • Mühlfeld, C., Singer, D., Engelhardt, N., Richter, J. and Schmiedl, A. (2005) Electron microscopy and microcalorimetry of the postnatal rat heart (rattus norvegicus). Comp. Biochem. Physiol. A. 141: 310–318.

    Article  CAS  Google Scholar 

  • Nielsen, J.S. and Gesser, H. (2001) Effects of high extracellular [K+] and adrenaline on force development, relaxation and membrane potential in cardiac muscle from freshwater turtle and rainbow trout. J. Exp. Biol. 204: 261–268.

    PubMed  CAS  Google Scholar 

  • Nielsen, K.E. and Gesser, H. (1983) Effects of [Ca2+]O on contractility in the anoxic cardiac-muscle of mammal and fish. Life Sci. 32: 1437–1442.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, G.E. and Renshaw, G.M. (2004) Hypoxic survival strategies in two fishes: extreme anoxia tolerance in the North European crucian carp and natural hypoxic preconditioning in a coral-reef shark. J. Exp. Biol. 207: 3131–3139.

    Article  PubMed  CAS  Google Scholar 

  • Noma, A. (1983) ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148.

    Article  PubMed  CAS  Google Scholar 

  • Ostadal, B., Ostadalova, I. and Dhalla, N.S. (1999) Development of cardiac sensitivity to oxygen deficiency: comparative and ontogenic aspects. Physiol. Rev. 74: 221–258.

    Google Scholar 

  • Orchard, C.H., and Kentish, J.C. (1990) Effects of changes of pH on the contractile function of cardiac muscle. Am. J. Physiol. 258: C967–C981.

    PubMed  CAS  Google Scholar 

  • Overgaard, J., Stecyk, J.A.W., Farrell, A.P. and Wang, T. (2002) Adrenergic control of the cardiovascular system in the turtle Trachemys scripta. J. Exp. Biol. 205: 3335–3345.

    PubMed  CAS  Google Scholar 

  • Overgaard, J. and Gesser, H. (2004) Force development, energy state and ATP production of cardiac muscle from turtles and trout during normoxia and severe hypoxia. J. Exp. Biol. 207: 1915–1924.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard, J., Wang, T., Nielsen, O.B. and Gesser, H. (2005) Extracellular determinants of cardiac contractility in the cold, anoxic turtle. Physiol. Biochem. Zool. 78: 976–995.

    Article  PubMed  CAS  Google Scholar 

  • Overgaard, J., Gesser, H. and Wang, T. (2007) Cardiac performance and cardiovascular regulation during anoxia/hypoxia in freshwater turtles. J. Exp. Biol. 210: 1687–1699.

    Article  PubMed  CAS  Google Scholar 

  • Paajanen, V. and Vornanen, M. (2003) Effects of chronic hypoxia on inward rectifier K+ current (I(K1)) in ventricular myocytes of crucian carp (Carassius carassius) heart. J. Membr. Biol. 194: 119–127.

    Article  PubMed  CAS  Google Scholar 

  • Paterson, D.J., Rogers, J., Powell, T. and Brown, H.F. (1993) Effect of catecholamines on the ventricular myocyte action-potential in raised extracellular potassium. Acta Physiol. Scand. 148: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Perry, S. and Reid, S. (1994) The effects of acclimation temperature on the dynamics of catecholamine release during acute hypoxia in the rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 186: 289–307.

    PubMed  CAS  Google Scholar 

  • Poupa, O., Gesser, H. and Johansen, K. (1978) Myocardial inotrophy of CO2 in water- and air-breathing vertebrates. Am J Physiol. 234: R155–R157.

    PubMed  CAS  Google Scholar 

  • Reese, S.A., Jackson, D.C. and Ultsch, G.R. (2002) The physiology of overwintering in a turtle that occupies multiple habitats, the common snapping turtle (Chelydra serpentina). Physiol. Biochem. Zool. 75: 432–438.

    Article  PubMed  Google Scholar 

  • Reeves, R.B. (1963) Control of glycogen utilization and glucose uptake in the anaerobic turtle heart. Am. J. Physiol. 205: 23–29.

    PubMed  CAS  Google Scholar 

  • Ruben, J.A. and Bennett, A.F. (1981) Intense exercise, bone structure and blood calcium levels in vertebrates. Nature. 291: 411–413.

    Article  PubMed  CAS  Google Scholar 

  • Saks, V., Dzeja, P., Schlattner, U., Vendelin, M., Terzic, A. and Wallimann, T. (2006) Cardiac system bioenergetics: metabolic basis of the Frank–Starling law. J. Physiol. 571: 253–273.

    Article  PubMed  CAS  Google Scholar 

  • Shi, H. and Jackson, D.C. (1997) Effects of anoxia, acidosis and temperature on the contractile properties of turtle cardiac muscle strips. J. Exp. Biol. 200: 1965–1973.

    PubMed  CAS  Google Scholar 

  • Shi, H., Hamm, P.H., Lawler, R.G. and Jackson, D.C. (1999) Different effects of simple anoxic lactic acidosis and simulated in vivo anoxic acidosis on turtle heart. Comp. Biochem. Physiol. A. 122: 173–180.

    CAS  Google Scholar 

  • Stecyk, J.A., Paajanen, V., Farrell, A.P., Vornanen, M. (2007) Effect of temperature and prolonged anoxia exposure on electrophysiological properties of the turtle (Trachemys scripta) heart. Am. J. Physiol. 293: R421–R437.

    CAS  Google Scholar 

  • Storey, K.B. and Storey, J.M. (1990) Facultative metabolic rate depression in animals: molecular regulation and biochemical adaptation in anaerobiosis, hibernation, and estivation. Q. Rev. Biol. 65: 145–174.

    Article  PubMed  CAS  Google Scholar 

  • Teague, W.E. Jr., Golding, E.M. and Dobson, G.P. (1996) Adjustment of K′ for the creatine kinase, adenylate kinase and ATP hydrolysis equilibria to varying temperature and ionic strength. J. Exp. Biol. 199: 509–512.

    PubMed  CAS  Google Scholar 

  • Thomas, M.J., Hamman, B.N. and Tibbits, G.F. (1996) Dihydropyridine and ryanodine binding in ventricles from rat, trout, dogfish and hagfish. J. Exp. Biol. 199: 1999–2009.

    PubMed  CAS  Google Scholar 

  • Tibbits, G.F., Kashihara, H., Thomas, M.J., Keen, J.E. and Farrell, A.P. (1990) Ca2+ transport in myocardial sarcolemma from rainbow trout. Am. J. Physiol. 259: R453–R460.

    PubMed  CAS  Google Scholar 

  • Tota, B. (1983) Vascular and metabolic zonation in the ventricular myocardium of mammals and fishes. Comp. Biochem. Physiol. A. 76: 423–438.

    Article  PubMed  CAS  Google Scholar 

  • Ultsch, G.R. and Jackson, D.C. (1982) Long-term submergence at 3°C of the turtle, Chrysemys picta bellii, in normoxic and severely hypoxic water. I. Survival, gas exchange and acid-base status. J. Exp. Biol. 96: 11–28.

    Google Scholar 

  • Ultsch, G.R., Carwile, M.E., Crocker, C.E. and Jackson, D.C. (1999) The physiology of hibernation among painted turtles: the eastern painted turtle (Chrysemys picta picta). Physiol. Biochem. Zool. 72: 493–501.

    Article  PubMed  CAS  Google Scholar 

  • van den Thillart, G., van Waarde, A., Muller, H.J., Erkelens, C., Addink, A. and Lugtenburg, J. (1989) Fish muscle energy metabolism measured by in vivo 31P-NMR during anoxia and recovery. Am. J. Physiol. 256: R922–R929.

    PubMed  CAS  Google Scholar 

  • van Warde, A. (1991) Alcoholic fermentation in multicellular organisms. Physiol. Zool. 64:895–920.

    Google Scholar 

  • Vleugels, A., Carmeliet, E., Bosteels, S. and Zaman, M. (1976) Differential effects of hypoxia with age on the chick embryonic heart. Changes in membrane potential, intracellular K and Na, K efflux and glycogen. Pflügers Arch. 30: 159–166.

    Article  Google Scholar 

  • Vornanen, M. (1999) Na+/Ca2+ exchange current in ventricular myocytes of fish heart: contribution to sarcolemmal Ca2+ influx. J. Exp. Biol. 202: 1763–1775.

    PubMed  CAS  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., Eppenberger, H.M. (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the ‘phosphocreatine circuit’ for cellular energy homeostasis. Biochem. J. 281: 21–40.

    PubMed  CAS  Google Scholar 

  • Wasser, J.S., Inman, K.C., Arendt, E.A., Lawler, R.G. and Jackson, D.C. (1990) 31P-NMR measurements of pHi and high-energy phosphates in isolated turtle hearts during anoxia and acidosis. Am. J. Physiol. 28: R521–R530.

    Google Scholar 

  • Wasser, J.S. and Jackson, D.C. (1991) Effects of anoxia and graded acidosis on the levels of circulating catecholamines in turtles. Respir. Physiol. 84: 363–377.

    Article  PubMed  CAS  Google Scholar 

  • Westerblad, H., Allen, D.G. and Lännergren, J. (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol. Sci. 17: 17–21.

    PubMed  CAS  Google Scholar 

  • Yee, H.F., Jackson, D.C. (1984) The effects of different types of acidosis and extracellular calcium on the mechanical activity of turtle atria. J. Comp. Physiol. 154: 385–391.

    CAS  Google Scholar 

  • Yellon, D.M., Baxter, G.F., Garcia-Dorado, D., Heusch, G. and Sumeray, M.S. (1998) Ischaemic preconditioning: present position and future directions. Cardiovasc. Res. 37: 21–33.

    Article  PubMed  CAS  Google Scholar 

  • Zaar, M., Overgaard, J., Gesser, H. and Wang, T. (2007) Contractile properties of the functionally divided python heart: two sides of the same matter. Comp. Biochem. Physiol. A. 146: 163–173.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gesser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gesser, H., Overgaard, J. (2009). Comparative Aspects of Hypoxia Tolerance of the Ectothermic Vertebrate Heart. In: Glass, M., Wood, S. (eds) Cardio-Respiratory Control in Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93985-6_12

Download citation

Publish with us

Policies and ethics