Skip to main content

Microscopic Anatomy

  • Chapter
Clinical Hepatology

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Structural Organization

  1. Akiyoshi H, Gonda T, Terada T (1998) A comparative his-tochemical and immunohistochemical study of aminergic, cholinergic and peptidergic innervation in rat, hamster, guinea pig, dog and human livers. Liver 18: 352–9

    CAS  PubMed  Google Scholar 

  2. Bioulac-Sage P, Lafon ME, Saric J, et al (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–12

    Article  CAS  Google Scholar 

  3. Bloch EH (1970) The termination of hepatic arterioles and functional unit of the liver as determined by microscopy of the living organ. Ann N Y Acad Sci 170: 78–87

    Article  Google Scholar 

  4. Brissaud E, Sabourin C (1888) Sur la constitution lobulaire du foie et les voies de la circulation sanguine intra-hepatique. C R Soc Biol Annee 8: 757–76

    Google Scholar 

  5. Ding WG, Fujimura M, Mori A, et al (1991) Light and electron microscopy of neuropeptide Y-containing nerves in human liver, gallbladder and pancreas. Gastroenterology 101: 1054–8

    CAS  PubMed  Google Scholar 

  6. Ekataksin W, Wake K (1997) New concepts in biliary and vascular anatomy of the liver. Prog Liver Dis 15: 1–30

    Google Scholar 

  7. Ekataksin W, Kaneda K (1999) Liver microvascular architecture: an insight into the pathophysiology of portal hypertension. Semin Liver Dis 19: 359–82

    Article  CAS  PubMed  Google Scholar 

  8. Ekataksin W (2000) The isolated artery: an intrahepatic arterial pathway that can bypass the lobular parenchyma in mammalian livers. Hepatology 31: 269–79

    Article  CAS  PubMed  Google Scholar 

  9. Elias H (1949) A re-examination of the structure of the mammalian liver II: the hepatic lobule and its relation to the vascular and biliary systems. Am J Anat 85: 379–456

    Article  CAS  PubMed  Google Scholar 

  10. Forssmann WG, Ito S (1977) Hepatocyte innervation in primates. J Cell Biol 74: 299–313

    Article  CAS  PubMed  Google Scholar 

  11. Gardemann A, Puschell GP, Jungermann K (1992) Nervous control of liver metabolism and hemodynamics. Eur J Biochem 207: 399–411

    Article  CAS  PubMed  Google Scholar 

  12. Gerber MA, Thung SN (1978) Carcinoembryonic antigen in normal and diseased liver tissue. Am J Pathol 92: 671–80

    CAS  PubMed  Google Scholar 

  13. Gouw ASH, van den Heuvel MC, Boot M, et al (2006) Dynamics of the vascular profile of the finer branches of the biliary tree in normal and diseased human livers. J Hepatol 45: 393–400

    Article  PubMed  Google Scholar 

  14. Jungermann K, Gardemann A, Beuers U, et al (1987) Regulation of liver metabolism by the hepatic nerves. Adv Enzyme Regul 26: 63–88

    Article  CAS  PubMed  Google Scholar 

  15. Kiernan F (1833) The anatomy and physiology of the liver. Philos Trans R Soc Lond 123: 711–70

    Article  Google Scholar 

  16. Lautt WW (1980) Hepatic nerves: a review of their functions and effects. Can J Physiol Pharmacol 56: 679–82

    Google Scholar 

  17. Ludwig J, Ritman EL, LaRusso NF, et al (1998) Anatomy of the human biliary system studied by quantitative computer-aided three dimensional imaging techniques. Hepatology 27: 893–9

    Article  CAS  PubMed  Google Scholar 

  18. Mall FP (1906) A study of the structural unit of the liver. Am J Anat 5: 227–308

    Article  Google Scholar 

  19. Matsumoto T, Komori R, Magara T, et al (1979) A study of the normal structure of the human liver, with special reference to its angioarchitecture. Jikeikai Med J 26: 1–40

    CAS  Google Scholar 

  20. Rappaport AM, Borowy ZJ, Longheed WM, et al (1954) Subdivision of hexagonal liver lobules into a structural and functional unit; role in hepatic physiology and pathology. Anat Res 119: 11

    Article  CAS  Google Scholar 

  21. Roskams TA, Theise ND, Balabaud C, et al (2004) Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology 39: 1739 –45

    Article  PubMed  Google Scholar 

  22. Saxena R, Theise ND, Crawford JM (1999) Microanatomy of the human liver-exploring the hidden interfaces. Hepatology 30: 1339–46

    Article  CAS  PubMed  Google Scholar 

  23. Seseke FG, Gardemann A, Jungermann K (1992) Signal propagation via gap junctions, a key step in the regulation of liver metabolism by the sympathetic hepatic nerves. FEBS Lett 301: 265–70

    Article  CAS  PubMed  Google Scholar 

  24. Takasaki S, Hano H (2001) Three-dimensional observations of the human hepatic artery (arterial system in the liver). J Hepatol 34: 455–66

    Article  CAS  PubMed  Google Scholar 

  25. Tarada T, Nakanuma Y, Ohta G (1987) Glandular elements around the intrahepatic bile ducts in man: their morphology and distribution in normal livers. Liver 7: 1–8

    Google Scholar 

  26. Teutsch HF (2005) The modular microarchitecture of human liver. Hepatology 42: 317–25

    Article  PubMed  Google Scholar 

  27. Tiniakos DG, Lee JA, Burt AD (1996) Innervation of the liver: morphology and function. Liver 16: 151–60

    CAS  PubMed  Google Scholar 

  28. Trutmann M, Sasse D (1994) The lymphatics of the liver. Anat Embryol 190: 201–9

    Article  CAS  PubMed  Google Scholar 

  29. Warren A, Le Couteur DG, Fraser R, et al (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44: 1182–90

    Article  CAS  PubMed  Google Scholar 

Cell Types

  1. AleffiS, Petrai I, Bertolani C, et al (2005) Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 42: 1339–48

    Article  CAS  PubMed  Google Scholar 

  2. Alison M, Sarraf C (1998) Hepatic stem cells. J Hepatol 29: 676–82

    Article  CAS  PubMed  Google Scholar 

  3. Alison M, Poulsom R, Jeffrey R, et al (2000) Hepatocytes from non-hepatic cells. Nature 406: 257

    Article  CAS  PubMed  Google Scholar 

  4. Alpini G, Prall RT, LaRusso NF (2001). The pathobiology of biliary epithelia. In: Arias IM (ed), The liver: biology and pathobiology, 4th edn. Raven Press, New York, pp 421–35

    Google Scholar 

  5. Anan A, Baskin-Bey ES, Bronk SF, et al (2006) Proteasome inhibition induces hepatic stellate cell apoptosis. Hepatology 43: 335–44

    Article  CAS  PubMed  Google Scholar 

  6. Aurich I, Mueller LP, Aurich H, et al (2007) Functional integration of hepatocytes derived from human mesenchymal stem cells into mouse livers. Gut 56: 405–15

    Article  CAS  PubMed  Google Scholar 

  7. Baba S, Fujii H, Hirose T, et al (2004) Commitment of bone marrow cells to hepatic stellate cells in mouse. J Hepatol 40: 255–60

    Article  PubMed  Google Scholar 

  8. Bainton DF (1981) The discovery of lysosomes. J Cell Biol 91: 66s–76s

    Article  CAS  PubMed  Google Scholar 

  9. Balabaud C, Boulard A, Quinton A, et al (1988). Light and transmission electron microscopy of sinusoids in human liver. In: Bioulac-Sage P, Balabaud C (eds) Sinusoids in human liver: health and disease. Rijswijk: Kupffer Cell Foundation

    Google Scholar 

  10. Bataller R, Nicolas JP, Gines P, et al (1997) Arginine vaso-pressin induces contraction and stimulates growth of cultured human hepatic stellate cells. Gastroenterology 113: 615–24

    Article  CAS  PubMed  Google Scholar 

  11. Bataller R, Sancho-Bru P, Ginés P, et al (2003) Activated human hepatic stellate cells express the renin-angiotensin system and synthesize angiotensin II. Gastroenterology 125: 117–25

    Article  CAS  PubMed  Google Scholar 

  12. Bilzer M, Roggel F, Gerbes AL, et al (2006) Role of Kupffer cells in host defense and liver disease. Liver Int 26: 1175–86

    Article  CAS  PubMed  Google Scholar 

  13. Bioulac-Sage P, Lafon ME, Saric J, et al (1990) Nerves and perisinusoidal cells in human liver. J Hepatol 10: 105–112

    Article  CAS  Google Scholar 

  14. Bode JG, Peters-Regehr T, Schliess F, et al (1998) Activation of mitogen-activated kinases and IL-6 release in response to lipopolysaccharides in Kupffer cells is modulated by anisoosmolarity. J Hepatol 28: 795–802

    Article  CAS  PubMed  Google Scholar 

  15. Bouwens L, Wisse E (1992) Pit cells in the liver. Liver 12: 3–9

    CAS  PubMed  Google Scholar 

  16. Braet F (2004) How molecular microscopy revealed new insights into the dynamics of hepatic endothelial fenestrae in the past decade. Liver Int 24: 532–9

    Article  PubMed  Google Scholar 

  17. Breitkopf K, Sawitza I, Westhoff JH, et al (2005) Thrombo-spondin 1 acts as a strong promoter of transforming growth factor beta effects via two distinct mechanisms in hepatic stellate cells. Gut 54: 673–81

    Article  CAS  PubMed  Google Scholar 

  18. Burt AD, Le Bail B, Balabaud C, et al (1993) Morphologic investigation of sinusoidal cells. Semin Liver Dis 13: 21–38

    Article  CAS  PubMed  Google Scholar 

  19. Cao Q, Mak KM, Lieber CS (2007) Leptin represses matrix metalloproteinase-1 gene expression in LX2 human hepatic stellate cells. J Hepatol 46: 124–33

    Article  CAS  PubMed  Google Scholar 

  20. Chinnery PF (2003) Searching for nuclear-mitochondrial genes. Trends Genet 19: 60–2

    Article  CAS  PubMed  Google Scholar 

  21. Crosby HA, Strain AJ (2001) Adult liver stem cells. bone marrow, blood, or liver derived? Gut 48: 153–54

    Article  CAS  PubMed  Google Scholar 

  22. Decker K (1990) Biologically active products of stimulated liver macrophages (Kupffer cells). Eur J Biochem 192: 245–61

    Article  CAS  PubMed  Google Scholar 

  23. Desmet VJ (1985) Intrahepatic bile ducts under the lens. J Hepatol 1: 545–59

    Article  CAS  PubMed  Google Scholar 

  24. Falkowski O, An HJ, Ianus IA, et al (2003) Regeneration of hepatocyte ‘buds’ in cirrhosis from intrabiliary stem cells. J Hepatol 39: 357–64

    Article  CAS  PubMed  Google Scholar 

  25. Feldmann G (1989) The cytoskeleton of the hepatocyte. Structure and functions. J Hepatol 8: 380–6

    CAS  Google Scholar 

  26. Feldmann G (1992) Liver ploidy. J Hepatol 16: 7–10

    Article  CAS  PubMed  Google Scholar 

  27. Fischer R, Cariers A, Reinehr R, et al (2002) Caspase-9 dependent killing of hepatic stellate cells by activated Kupffer cells. Gastroenterology 123: 845–61

    Article  CAS  PubMed  Google Scholar 

  28. Friedman SL (1996). Hepatic stellate cells. In: Boyer JL, Ockner RK (eds) Progress in liver diseases, Vol. XIV. W.B. Saunders, Philadelphia, PA, pp 101–30

    Google Scholar 

  29. Gabriel A, Kuddus RH, Rao AS, et al (1999) Down-regulation of endothelin receptors by transforming growth factor b1 in hepatic stellate cells. J Hepatol 30: 440–50

    Article  CAS  PubMed  Google Scholar 

  30. Galli A, Svegliati-Baroni G, Ceni E, et al (2005) Oxidative stress stimulates proliferation and invasiveness of hepatic stellate cells via a MMP2-mediated mechanism. Hepatology 41: 1074–84

    Article  CAS  PubMed  Google Scholar 

  31. Geerts A (2004) On the origin of stellate cells mesodermal, endodermal or neuro-ectodermal? J Hepatol 40: 331–4

    Article  PubMed  Google Scholar 

  32. Gehling UM, Willems M, Dandri M, et al (2005) Partial hepatectomy induces mobilization of a unique population of haematopoietic progenitor cells in human healthy liver donors. J Hepatol 43: 845–53

    Article  CAS  PubMed  Google Scholar 

  33. Görbig MN, Ginés P, Bataller R, et al (2001) Human hepatic stellate cells secrete adrenomedullin: potential autocrine factor in the regulation of cell contractility. J Hepatol 34: 222–9

    Article  PubMed  Google Scholar 

  34. Golgi C (1898) Sur la structure des cellules nerveuses. Arch Ital Biol 30: 60–71

    Google Scholar 

  35. Grompe M (2005) The origin of hepatocytes. Gastroenterology 128: 2158–60

    Article  PubMed  Google Scholar 

  36. Hautekeete ML, Geerts A (1997) The hepatic stellate (Ito) cell: its role in human liver disease. Virchows Arch 430: 195–207

    Article  CAS  PubMed  Google Scholar 

  37. Helfand BT, Chang L, Goldman RD (2004) Intermediate filaments are dynamic and motile elements of cellular architecture. J Cell Sci 117: 133–41

    Article  CAS  PubMed  Google Scholar 

  38. Helfand BT, Chou YH, Shumaker DK, et al (2005) Intermediate filament proteins participate in signal transduc-tion. Trends Cell Biol 15: 568–70

    Article  CAS  PubMed  Google Scholar 

  39. Ito T (1951) Cytological studies on stellate cells of Kupffer and fat storing cells in the capillary wall of human liver. Acta Anat Nippon 26: 2

    Google Scholar 

  40. Kanno N, LeSage G, Glaser SS, et al (2000) Functional heterogeneity of the intrahepatic biliary epithelium. Hepatology 31: 555–61

    Article  CAS  PubMed  Google Scholar 

  41. Kharbanda KK, Rogers DD, Wyatt TA, et al (2004) Transforming growth factor-beta induces contraction of activated hepatic stellate cells. J Hepatol 41: 60–6

    Article  CAS  PubMed  Google Scholar 

  42. Knittel T, Kobold D, Saile B, et al (1999) Rat liver myofibroblasts and hepatic stellate cells: different cell populations of the fibroblast lineage with fibrogenic potential. Gastroenterology 117: 1205–21

    Article  CAS  PubMed  Google Scholar 

  43. Kuiper J, Brouwer A, Knook DL, et al (1994). Kupffer and sinusoidal endothelial cells. In: Arias IM (ed) The liver: biology and pathobiology, 3rd edn. Raven, New York, pp 791–818

    Google Scholar 

  44. Lazarides E (1980) Intermediate filaments as mechanical integrators of cellular space. Nature 283: 249–56

    Article  CAS  PubMed  Google Scholar 

  45. Lee JS, Semela D, Iredale J, et al (2007) Sinusoidal remodelling and angiogenesis a new function for the liver-specific pericyte? Hepatology 45: 817–25

    Article  CAS  PubMed  Google Scholar 

  46. Lee K-D, Kwang-Chun Kuo T, Whang-Peng J, et al (2004) In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology 40: 1275–84

    Article  CAS  PubMed  Google Scholar 

  47. Liu C, Schreiter T, Dirsch O, et al (2004) Presence of markers for liver progenitor cells in human-derived intrahepatic biliary epithelial cells. Liver Int 24: 669–78

    Article  CAS  PubMed  Google Scholar 

  48. Loud AV (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J Cell Biol 37: 27–46

    Article  CAS  PubMed  Google Scholar 

  49. Mallat A, Lotersztajn S (1996) Multiple hepatic functions of endothelin-1 : physiopathological relevance. J Hepatol 25: 405–13

    Article  CAS  PubMed  Google Scholar 

  50. Mann DA, Smart DE (2002) Transcriptional regulation of hepatic stellate cell activation. Gut 50: 891–6

    Article  CAS  PubMed  Google Scholar 

  51. Marzioni M, Glaser SS, Heather F, et al (2002) Functional heterogeneity of cholangiocytes. Semin Liver Dis 22: 227–40

    Article  PubMed  Google Scholar 

  52. Meier PY (1988) Transport polarity of hepatocytes. Semin Liver Dis 8: 293–307

    Article  CAS  PubMed  Google Scholar 

  53. Moll R, Franke WW, Schiller DL, et al (1982) The catalog of human cytokeratins: patterns of expression in normal epithe-lia, tumors and cultured cells. Cell 31: 11–24

    Article  CAS  PubMed  Google Scholar 

  54. Moll R, Schiller DL, Franke WW (1990) Identification of protein IT of the intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol 111: 567–80

    Article  CAS  PubMed  Google Scholar 

  55. Niki T, Pekny M, Hellemans K, et al (1999) Class VI intermediate filament protein nestin is induced during activation of rat hepatic stellate cells. Hepatology 29: 520–7

    Article  CAS  PubMed  Google Scholar 

  56. Parent R, Marion MJ, Furio L, et al (2004) Origin and characterization of a human bipotent liver progenitor cell line. Gastroenterology 126: 1147–56

    Article  PubMed  Google Scholar 

  57. Petersen BE, Bowen WC, Patrene KD, et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284: 1168–70

    Article  CAS  PubMed  Google Scholar 

  58. Pinzani M (1995) Hepatic stellate (Ito) cells: expanding roles for a liver-specific pericyte. J Hepatol 22: 700–6

    Article  CAS  PubMed  Google Scholar 

  59. Pinzani M, Milani S, De Franco R, et al (1996) Endothelin-1 is overexpressed in cirrhotic liver and exerts multiple effects on activated human hepatic stellate cells. Gastroenterology 110: 534–48

    Article  CAS  PubMed  Google Scholar 

  60. Pinzani M, Marra F, Carloni V (1998) Signal transduction in hepatic stellate cells. Liver 18: 2–13

    CAS  PubMed  Google Scholar 

  61. Pon LA, Schon EA (2001) Mitochondria. Academic, New York

    Google Scholar 

  62. Radu A, Blobel G, Moore SM (1995) Identification of a protein complex that is required for nuclear protein import and mediates docking of import substrate to distinct nucleopro-teins. Proc Natl Acad Sci USA 92: 1769–73

    Article  CAS  PubMed  Google Scholar 

  63. Ramadori G (1991) The stellate cell (Ito-cell, fat-storing cell, lipocyte, perisinusoidal cell) of the liver. New insights into pathophysiology of an intriguing cell. Virchows Arch B Cell Pathol 61: 147–58

    CAS  Google Scholar 

  64. Ramadori G, Saile B (2002) Mesenchymal cells in the liver — one cell type or two? Liver 22: 283–94

    Article  CAS  PubMed  Google Scholar 

  65. Reynaert H, Thompson MG, Thomas T, et al (2002) Hepatic stellate cells: role in microcirculation and patho physiology of portal hypertension. Gut 50: 571–81

    Article  CAS  PubMed  Google Scholar 

  66. Roskams T, DeVos R, van Eyken P, et al (1998) Hepatic OV-6 expression in human liver disease and rat experiments: evidence for hepatic progenitor cells in man. J Hepatol 29: 455–63

    Article  CAS  PubMed  Google Scholar 

  67. Rouiller C, Bernard W (1956) “Microbodies” and the problem of mitochondrial regeneration in liver cells. J Biophys Biochem Cytol Suppl. 2: 355–8

    Article  Google Scholar 

  68. Ruhnke M, Ungefroren H, Nussler A, et al (2005) Differentiation of in vitro-modified human peripheral blood monocytes into hepatocyte-like and pancreatic islet-like cells. Gastroenterology 128: 1774–86

    Article  CAS  PubMed  Google Scholar 

  69. Sakaida I, Nagatomi A, Hironaka K, et al (1999) Quantitative analysis of liver fibrosis and stellate cell changes in patients with chronic hepatitis C after interferon therapy. Am J Gastroenterol 94: 489–96

    Article  CAS  PubMed  Google Scholar 

  70. Sanz S, Pucilowska JB, Liu S, et al (2005) Expression of insulin-like growth factor I by activated hepatic stellate cells reduces fibrogenesis and enhances regeneration after liver injury. Gut 54: 134–41

    Article  CAS  PubMed  Google Scholar 

  71. Schmitt-Gräff A, Krüger S, Borchard F, et al (1991) Modulation of alpha smooth muscle actin and desmin expression in perisinusoidal cells of normal and diseased human livers. Am J Pathol 138: 1233–42

    PubMed  Google Scholar 

  72. Schroer TA, Sheetz MP (1991) Functions of microtubule-based motors. Ann Rev Physiol 53: 629–52

    Article  CAS  Google Scholar 

  73. Siegmund SV, Uchinami H, Osawa Y, et al (2005) Anandamide induces necrosis in primary hepatic stellate cells. Hepatology 41: 1085–95

    Article  CAS  PubMed  Google Scholar 

  74. Sirica AE (1992). Biology of biliary epithelial cells. In: Boyer JL, Ockner RK (eds) Progress in liver diseases, Vo l X. W.B. Saunders, Philadelphia, PA, pp 63–87

    Google Scholar 

  75. Smedsrod B, Pertoft H, Gustafson S, et al (1990) Scavenger functions of the liver endothelial cell. Biochem J 266: 313–27

    CAS  PubMed  Google Scholar 

  76. Smedsbrod B, DeBleeser PJ, Braet F, et al (1994) Cell biology of liver endothelial and Kupffer cells. Gut 35: 1509–16

    Article  Google Scholar 

  77. Sternlieb J, Quintara N (1977) The peroxisomes of human hepatocytes. Lab Invest 36: 140–9

    CAS  PubMed  Google Scholar 

  78. Strain AJ, Crosby HA (2000) Hepatic stem cells. Gut 46: 743–45

    Article  CAS  PubMed  Google Scholar 

  79. Sugimoto R, Enjoji M, Kohjima M, et al (2005) High glucose stimulates hepatic stellate cells to proliferate and to produce collagen through free radical production and activation of mitogen-activated protein kinase. Liver Int 25: 1018–26

    Article  CAS  PubMed  Google Scholar 

  80. Suskind DL, Muench MO (2004) Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34(+) cytokeratin 7/8(+) cells express markers for stellate cells. J Hepatol 40: 261–8

    Article  CAS  PubMed  Google Scholar 

  81. Taimr P, Higuchi H, Kocova E, et al (2003) Activated stellate cells express the TRAIL receptor-2/death receptor-5 and undergo TRAIL-mediated apoptosis. Hepatology 37: 87–95

    Article  CAS  PubMed  Google Scholar 

  82. Tamaki H, Yamashina S (2002) The stack of the Golgi apparatus. Arch Histol Cytol 65: 209–18

    Article  PubMed  Google Scholar 

  83. Tan J, Hytiroglu P, Wieczorek R, et al (2002) Immunohis-tochemical evidence for hepatic progenitor cells in liver diseases. Liver 22: 365–73

    Article  PubMed  Google Scholar 

  84. Tavoloni N (1987) The intrahepatic biliary epithelium: an area of growing interest in hepatology. Semin Liver Dis 7: 280–92

    Article  CAS  PubMed  Google Scholar 

  85. Theise ND, Badve S, Saxena R, et al (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31: 235–40

    Article  CAS  PubMed  Google Scholar 

  86. Theise ND, Nimmakayalu M, Gardner R, et al (2000) Liver from bone marrow in humans. Hepatology 32: 11–6

    Article  CAS  PubMed  Google Scholar 

  87. Thorgeirsson SS, Grisham JW (2006) Hematopietic cells as hepatocyte stem cells: a critical review of the evidence. Hepatology 43: 2–8

    Article  PubMed  Google Scholar 

  88. Uyama N, Zhao L, Van Rossen E, et al (2006) Hepatic stellate cells express synemin, a protein bridging intermediate filaments to focal adhesions. Gut 55: 1276–89

    Article  CAS  PubMed  Google Scholar 

  89. Van Eyken P, Desmet VJ (1993) Cytokeratins and the liver. Liver 13: 113–22

    PubMed  Google Scholar 

  90. Vinas O, Bataller R, Sancho-Bru P, et al (2003) Human hepatic stellate cells show features of antigen-presenting cells and stimulate lymphocyte proliferation. Hepatology 38: 919–29

    CAS  PubMed  Google Scholar 

  91. Wake K (1971) “Sternzellen” in the liver: perisinusoidal cells with special reference to storage of vitamin A. Am J Anat 132: 429–62

    Article  CAS  PubMed  Google Scholar 

  92. Wake K, Decker K, Kim A, et al (1989) Cell biology and kinetics of Kupffer cells in the liver. Int Rev Cytol 118: 173–229

    Article  CAS  PubMed  Google Scholar 

  93. Wake K (1995). Structure of the sinusoidal wall in the liver. In: Wisse E, Knook DL, Wake K (eds) Cells of the hepatic sinusoid. Kupffer Cell Foundation, Leiden, pp 241–6

    Google Scholar 

  94. Wang E, Fischmann D, Liem PKH, et al (1985) Intermediate filaments. Ann NY Acad Sci 455: 32–56

    Article  CAS  PubMed  Google Scholar 

  95. Warren A, Le Couteur DG, Fraser R, et al (2006) T lymphocytes interact with hepatocytes through fenestrations in murine liver sinusoidal endothelial cells. Hepatology 44: 1182–90

    Article  CAS  PubMed  Google Scholar 

  96. Wilson JW, Leduc EH (1958) Role of cholangioles in restoration of the liver of the mouse after dietary injury. J Pathol Bacteriol 76: 441–9

    Article  CAS  PubMed  Google Scholar 

  97. Winnock M, Barcina MG, Lukomska B, et al (1993) Liver-associated lymphocytes: role in tumor defense. Semin Liver Dis 13: 81–92

    Article  CAS  PubMed  Google Scholar 

  98. Wisse E, van't Noordende JM, van der Meulen J, et al (1976) The pit cell: description of a new type of cell occurring in rat liver sinusoids and peripheral blood. Cell Tissue Res 173: 423–35

    Article  CAS  PubMed  Google Scholar 

  99. Wisse E, De Zanger RB, Charles K, et al (1985) The liver sieve: considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683–92

    Article  CAS  PubMed  Google Scholar 

  100. Yokomori H, Oda M, Ogi M, et al (2000) Hepatic sinusoidal endothelial fenestrae express plasma membrane Ca++pump and Ca++ Mg++-ATPase. Liver 20: 458–64

    Article  CAS  PubMed  Google Scholar 

Extracellular Matrix

  1. Arthur MJP (1994). Matrix degradation in the liver. In: Surrenti C, Casini A, Milani S, Pinzani M (eds) Fat-storing cells and liver fibrosis. Kluwer, Dordrecht, pp 110–27

    Google Scholar 

  2. Beck K, Hunter I, Engel J (1990) Structure and function of laminin: anatomy pof a multidomain glycoprotein. FASEB J 4: 148–60

    CAS  PubMed  Google Scholar 

  3. Burgeson RE (1988) New collagens, new concepts. Annu Rev Cell Biol 4: 551–77

    Article  CAS  PubMed  Google Scholar 

  4. Goodman SR (1998) Medical cell biology, 2nd edn. Lippincott-Raven, Philadelphia, PA, pp 205

    Google Scholar 

  5. Hynes RO (1987) Integrins: a family of cell surfa ce receptors. Cell 48: 549–54

    Article  CAS  PubMed  Google Scholar 

  6. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–87

    Article  CAS  PubMed  Google Scholar 

  7. Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252: C1–C9

    CAS  PubMed  Google Scholar 

  8. Musso O, Rehn M, Saarela J, et al (1998) Collagen XVIII is localized in sinusoids and basement membrane zones and expressed by hepatocytes and activated stellate cells in fibrotic human liver. Hepatology 28: 98–107

    Article  CAS  PubMed  Google Scholar 

  9. Petrides PE (1998). Binde-und Stützgewebe. In: Löffler G, Petrides PE (eds) Biochemie und pathobiochemie, 6th edn. Auflage, Springer Verlag, Berlin, pp 733–59

    Google Scholar 

  10. Prockop DJ, Kivirikko KI, Tuderman L, et al (1979) The biosynthesis of collagen and its disorders. N Engl J Med 301: 13–23

    Article  CAS  PubMed  Google Scholar 

  11. Rojkind M, Giambrone MA, Biempica L (1979) Collagen types in normal and cirrhotic liver. Gastroenterology 76: 710–9

    CAS  PubMed  Google Scholar 

  12. Ruoslahti E (1988) Structure and biology of proteoglycans. Annu Rev Cell Biol 4: 229–55

    Article  CAS  PubMed  Google Scholar 

  13. Schuppan D (1990) Structure of the extracellular matrix in normal and fibrotic liver: collagens and glycoproteins. Semin Liver Dis 10: 1–10

    Article  CAS  PubMed  Google Scholar 

  14. Schuppan D, Gressner AM (1999). Function and metabolism of collagens and other extracellular matrix proteins. In: Bircher J, Benhamou JP, McIntyre N, Rizzetto M, Rodés J (eds) Oxford textbook of clinical hepatology, 2nd edn. Oxford University Press, New York, pp 381–407

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dancygier, H. (2010). Microscopic Anatomy. In: Clinical Hepatology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-93842-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-93842-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-93841-5

  • Online ISBN: 978-3-540-93842-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics