Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 214))

Abstract

For particle filtering tracking method, particle choosing was random to some degree according to the dynamics equation, which may cause inaccurate tracking results. To compensate, an improved particle filtering tracking method was presented. The motion region was detected by redundant discrete wavelet transforms method (RDWT), and then the key points were obtained by scale invariant feature transform. The matching key points in the follow-up frames obtained by SIFT method were used as the initial particles to improve the tracking performance. Experimental results show that more particles centralize in the region of motion area by the presented method than traditional particle filtering, and tracking results are more accurate and robust of occlusion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhang, L., Han, J., He, W., Tang, R.S.: Matching Method Based on Self-adjusting Template Using in Tracking System. Journal of Chongqing University 6, 74–76 (2005)

    Google Scholar 

  2. Magee, D.R.: Tracking Multiple Vehicles Using Foreground, Background and Motion Models. Image and Vision Computing 22, 143–155 (2004)

    Article  Google Scholar 

  3. Liu, H., Jiang, G., Li, W.: A Multiple Objects Tracking Algorithm Based on Snake Model. Computer Engineering and Applications 42(7), 76–79 (2006)

    Google Scholar 

  4. Comaniciu, D., Ramesh, V.: Mean Shift and Optimal Prediction for Efficient Object Tracking. In: Proc. of the IEEE International Conference on Image Processing, vol. 3, pp. 70–73 (2000)

    Google Scholar 

  5. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)

    Article  Google Scholar 

  6. Hue, C., Le Cadre, J., Perez, P.: Tracking Multiple Objects with Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems 38, 313–318 (2003)

    Google Scholar 

  7. Gao, T., Liu, Z.-g., Zhang, J.: BDWT based Moving Object Recognition and Mexico Wavelet Kernel Mean Shift Tracking. Journal of System Simulation 20(19), 5236–5239 (2008)

    Google Scholar 

  8. Otsu, N.: A Threshold Selection Method from Gray-Level Histogram. IEEE Trans. SMC 9(1), 62–66 (1979)

    MathSciNet  Google Scholar 

  9. Gao, T., Liu, Z.-g.: Moving Video Object Segmentation based on Redundant Wavelet Transform. In: Proc.of the IEEE International Conference on Information and Automation, pp. 156–160 (2008)

    Google Scholar 

  10. Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  11. Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proc. of the International Conference on Computer Vision, pp. 1150–1157 (1999)

    Google Scholar 

  12. Arulampalam, S., Maskell, S., Gordon, N., Clapp, T.: A Tutorial on Particle Filters for On-Line Nonlinear/ Nongaussian Bayesian Tracking. IEEE Trans. Signal Process. 50(2), 174–188 (2002)

    Article  Google Scholar 

  13. Pitt, M., Shephard, N.: Auxiliary Particle Filters. J. Amer. Statist. Assoc. 94(446), 590–599 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  14. Doucet, A., Vo, B.-N., Andrieu, C., Davy, M.: Particle Filter for Multi-Target Tracking and Sensor Management. In: Proc. of the Fifth International Conference on Information Fusion, pp. 474–481 (2002)

    Google Scholar 

  15. Sidenbladh, H.: Multi-target Particle Filtering for the Probability Hypothesis Density. In: Proc. of the Sixth International Conference on Information Fusion, pp. 1110–1117 (2003)

    Google Scholar 

  16. Reckleitis, I.: A Particle Filter Tutorial for Mobile Robot Localization. In: Proc. of the International Conference on Robotics and Automation, vol. 42, pp. 1–36 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gao, T., Liu, Zg., Zhang, J. (2009). Feature Particles Tracking for the Moving Object. In: Chien, BC., Hong, TP. (eds) Opportunities and Challenges for Next-Generation Applied Intelligence. Studies in Computational Intelligence, vol 214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92814-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92814-0_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92813-3

  • Online ISBN: 978-3-540-92814-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics