Skip to main content

iTASC: A Tool for Multi-Sensor Integration in Robot Manipulation

  • Chapter
  • First Online:
Multisensor Fusion and Integration for Intelligent Systems

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 35))

Abstract

iTASC (acronym for ‘instantaneous task specification using constraints) deschutter2006 is a systematic constraint-based approach to specify complex tasks of general sensor-based robot systems. iTASC integrates both instantaneous task specification and estimation of geometric uncertainty in a unified framework. Automatic derivation of controller and estimator equations follows from a geometric task model that is obtained using a systematic task modeling procedure. The approach applies to a large variety of robot systems (mobile robots, multiple robot systems, dynamic human-robot interaction, etc.), various sensor systems, and different robot tasks. Using an example task, this paper shows that iTASC is a powerful tool for multi-sensor integration in robot manipulation. The example task includes multiple sensors: encoders, a force sensor, cameras, a laser distance sensor and a laser scanner. The paper details the systematic modeling procedure for the example task and elaborates on the task specific choice of two types of task coordinates: feature coordinates, defined with respect to object and feature frames, which facilitate the task specification, and uncertainty coordinates to model geometric uncertainty. Experimental results for the example task are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. J. De Schutter, T. De Laet, J. Rutgeerts, W. Decré, R. Smits, E. Aertbeliën, K. Claes, and H. Bruyninckx, “Constraint-based task specification and estimation for sensor-based robot systems in the presence of geometric uncertainty,” Int. J. Rob. Res., vol. 26, no. 5, pp. 433–455, 2007.

    Article  Google Scholar 

  2. J. De Schutter and H. Van Brussel, “Compliant Motion I, II,” Int. J. Rob. Res., vol. 7, no. 4, pp. 3–33, August 1988.

    Article  Google Scholar 

  3. N. Hogan, “Impedance control: an approach to manipulation. Parts I-III,” Trans. ASME J. Dyn. Syst. Meas. Control, vol. 107, pp. 1–24, 1985.

    MATH  Google Scholar 

  4. N. Hosan, “Stable execution of contact tasks using impedance control,” in Int. Conf. Rob. Autom., Raleigh, NC, 1987, pp. 1047–1054.

    Google Scholar 

  5. H. Kazerooni, “On the robot compliant motion control,” Trans. ASME J. Dyn. Syst. Meas. Control, vol. 111, pp.416–425, 1989.

    Article  MATH  Google Scholar 

  6. J. Baeten, H. Bruyninckx, and J. De Schutter, “Integrated vision/force robotics servoing in the task frame formalism,” Int. J. Rob. Res., vol. 22, no. 10, pp. 941–954, 2003.

    Article  Google Scholar 

  7. M. T. Mason, “Compliance and force control for computer controlled manipulators,” IEEE Trans. Syst. Man. Cybern., vol. SMC-11, no. 6, pp. 418–432, 1981.

    Article  Google Scholar 

  8. H. Bruyninckx and J. De Schutter, “Specification of force-controlled actions in the “Task Frame Formalism”: a survey,” IEEE Trans. Rob. Autom., vol. 12, no. 5, pp. 581–589, 1996.

    Article  Google Scholar 

  9. A. P. Ambler and R. J. Popplestone, “Inferring the positions of bodies from specified spatial relationships,” Artif. Intell., vol. 6, pp. 157–174, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. Samson, M. Le Borgne, and B. Espiau, Robot Control, the Task Function Approach. Oxford, England: Clarendon Press, 1991.

    Google Scholar 

  11. J. De Schutter, J. Rutgeerts, E. Aertbelien, F. De Groote, T. De Laet, T. Lefebvre, W. Verdonck, and H. Bruyninckx, “Unified constraint-based task specification for complex sensor-based robot systems,” in Int. Conf. Rob. Autom., Barcelona, Spain, 2005, pp. 3618–3623.

    Google Scholar 

  12. T. De Laet, W. Decré, J. Rutgeerts, H. Bruyninckx, and J. De Schutter, “An application of constraint-based task specification and estimation for sensor-based robot systems,” in Proc. IEEE/RSJ Int. Conf. Int. Rob. and Syst., San Diego, California, 2007, pp. 1658–1664.

    Google Scholar 

  13. W. Decré, T. De Laet, J. Rutgeerts, H. Bruyninckx, and J. De Schutter, “Application of a generic constraint-based programming approach to an industrial relevant robot task with uncertain geometry,” in IEEE Int. Conf. Comp. Tool, Warsaw, Poland, September 2007, pp. 2620–2626.

    Google Scholar 

  14. T. De Laet and J. De Schutter, “Control schemes for constraint-based task specification in the presence of geometric uncertainty using auxiliary coordinates,” Dept. Mech. Eng., Katholieke Univ. Leuven, Belgium, Internal report 07RP001, 2007.

    Google Scholar 

  15. K. L. Doty, C. Melchiorri, and C. Bonivento, “A theory of generalized inverses applied to robotics,” Int. J. Rob. Res., vol. 12, no.1, pp. 1–19, 1993.

    Article  Google Scholar 

  16. Y. Nakamura, Advanced Robotics: Redundancy and Optimization. Reading, MA: Addison-Wesley, 1991.

    Google Scholar 

  17. A. Ben-Israel and T. N. E. Greville, Generalized Inverses: Theory and Applications, reprinted ed. Huntington, NY: Robert E. Krieger Publishing Company, 1980.

    Google Scholar 

  18. C. M. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.

    MATH  Google Scholar 

  19. I. J. Cox, “A review of statistical data association techniques for motion correspondence,” Int. J. Comput. Vis., vol. 10, no. 1, pp. 53–667, 1993.

    Article  Google Scholar 

  20. D. Schulz, W. Burgard, and D. Fox, “People tracking with mobile robots using sample-based joint probabilistic data association filters,” Int. J. Rob. Res., vol. 22, no. 2, pp. 99–116, 2003.

    Article  Google Scholar 

  21. M. Isard and A. Blake, “ICondensation–-conditional density propagation for visual tracking,” Int. J. Comp. Vis., vol. 29, no. 1, pp. 5–28, 1998.

    Article  Google Scholar 

  22. J. Shen and S. Castan, “An optimal linear operator for step edge detection,” Comp. Vis. Graph. Image Proc.: Graph. Models Underst., vol. 54, no.2, pp. 112–133, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruben Smits .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Smits, R., De Laet, T., Claes, K., Bruyninckx, H., De Schutter, J. (2009). iTASC: A Tool for Multi-Sensor Integration in Robot Manipulation. In: Hahn, H., Ko, H., Lee, S. (eds) Multisensor Fusion and Integration for Intelligent Systems. Lecture Notes in Electrical Engineering, vol 35. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89859-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89859-7_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89858-0

  • Online ISBN: 978-3-540-89859-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics