Skip to main content

Multi-dressed MWM Processes

  • Chapter
Multi-Wave Mixing Processes
  • 545 Accesses

Abstract

In Chapters 7–8, experimental generations of the coexisting four-wave mixing (FWM) and six-wave mixing (SWM) processes in several simple multilevel atomic systems and their interactions/interplays have been presented. The previous discussions for those atomic systems were mainly on the basic physical concepts to generate the coexisting multi-wave mixing (MWM) processes and their experimental implementations, and very little theoretical details were given. In this Chapter, we present some detail theoretical calculations on the related topics of generating coexisting MWM processes in the coherently-prepared atomic media. The first topic (Section 8.1) is on the ultraslow propagations of the nondegenerate FWM (NDFWM) signal and the weak probe beam in a close-cycled four-level double-ladder atomic system. Under certain conditions (such as balanced laser beam powers or atomic coherence), matched pulses are achievable for the pulsed probe beam and the generated NDFWM signal, which can transmit through the atomic medium with little absorption. The second topic is on the multiple dressing MWM processes in multi-level atomic systems. Section 8.2 will present the theoretical treatments for the generalized dressed and the doubly-dressed MWM in a general (n+1)-level cascade atomic system. Higher-order nonlinear wave-mixing processes can be generated in such a close-cycled cascade system. Then, using a five-level atomic system, we show how three doubly-dressing (i.e., nested-type, parallel-type, and sequential-cascade-type) schemes for the FWM process (in the three-level system) can be used to generate coexisting FWM, SWM, and eight-wave mixing (EWM) processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wang H, Goorskey D, Xiao M. Enhanced Kerr nonlinearity via atomic coherence in a three-level atomic system. Phys. Rev. Lett., 2001, 87: 073601.

    Article  ADS  Google Scholar 

  2. Harris S E. Electromagnetically induced transparency. Phys. Today, 1997, 50: 36–42.

    Article  Google Scholar 

  3. Gea-Banacloche J, Li Y, Jin S, Xiao M. Electromagnetically induced transparency in ladder-type inhomogeneously broadened media: Theory and experiment. Phys. Rev. A, 1995, 51: 576–584.

    Article  ADS  Google Scholar 

  4. Xiao M, Li Y Q, Jin S, Gea-Banacloche J. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 1995, 74: 666–669.

    Article  ADS  Google Scholar 

  5. Schmidt H, Imamoglu A. Giant Kerr nonlinearities obtained by electromagnetically induced transparency. Opt. Lett., 1996, 21: 1936–1938.

    Article  ADS  Google Scholar 

  6. Harris S E, Yamamoto Y. Photon Switching by Quantum Interference. Phys. Rev. Lett., 1998, 81: 3611–3614.

    Article  ADS  Google Scholar 

  7. Kang H S, Zhu Y F. Observation of large Kerr nonlinearity at low light intensities. Phys. Rev. Lett., 2003, 91: 093601.

    Article  ADS  Google Scholar 

  8. Lu B, Burkett W H, Xiao M. Nondegenerate four-wave mixing in a double-Lambda system under the influence of coherent population trapping. Opt. Lett., 1998, 23: 804–806; Li Y, Xiao M. Enhancement of Non-Degenerate Four-Wave Mixing Using Electromagnetically Induced Transparency in Rubidium Atoms. Opt. Lett., 1996, 21: 1064-1066; Brown A W, and Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating.Opt. Lett. 2005, 30: 699-701.

    Article  ADS  Google Scholar 

  9. Kang H, Hernandez G, Zhu Y F. Superluminal and slow light propagation in cold atoms. Phys. Rev. A, 2004, 70: 061804.

    Article  ADS  Google Scholar 

  10. Payne M G, Deng L. Consequences of induced transparency in a double-Λ scheme: Destructive interference in four-wave mixing. Phys. Rev. A, 2002, 65: 063806; Deng L, Payne M G. Three-photon destructive interference in ultraslow-propagation-enhanced four-wave mixing. Phys. Rev. A, 2003, 68: 051801(R).

    Article  ADS  Google Scholar 

  11. Wu Y, Yang X. Highly efficient four-wave mixing in double-A system in ultraslow propagation regime. Phys. Rev. A, 2004, 70: 053818; Wu Y. Two-color ultraslow optical solitons via four-wave mixing in cold-atom media. Phys. Rev. A, 2005, 71: 053820.

    Article  ADS  Google Scholar 

  12. Kang H, Hernandez G, Zhu Y F. Nonlinear wave mixing with electromagnetically induced transparency in cold atoms. J. Mod. Opt., 2005, 52: 2391–2399; Kang H, Hernandez G, Zhang J P, Zhu Y F. Phase-controlled light switching at low light levels. Phys. Rev. A, 2006, 73: 011802(R).

    Article  MATH  ADS  Google Scholar 

  13. Zhang Y P, Brown A W, Xiao M. Matched ultraslow propagation of highly efficient four-wave mixing in a closely cycled double-ladder system. Phys. Rev. A, 2006, 74: 053813.

    Article  ADS  Google Scholar 

  14. Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond sum-frequency polarization beats using twin noisy driving fields. Phys. Rev. A, 2005, 71: 023802; Zhang Y P, Gan C L, Li L, et al. Rayleigh-enhanced attosecond sum-frequency polarization beats via twin color-locking noisy lights. Phys. Rev. A, 2005, 72: 013812.

    Article  ADS  Google Scholar 

  15. Harris S E, Hau L. Nonlinear Optics at Low Light Levels. Phys. Rev. Lett., 1999, 82: 4611–4614; Harris S E, Field J E, Imamoglu A. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 1990, 64: 1107-1110; Harris S E. Electromagnetically induced transparency with matched pulses. Phys. Rev. Lett., 1993, 70: 552-555. Braje D A, Balic V, Goda S, et al. Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett., 2004, 93: 183601-183604; McCormick C F, Boyer V, Arimondo E, Lett P D. Strong relative intensity squeezing by four-wave mixing in rubidium vapor. Opt. Lett., 2007, 32: 178.

    Article  ADS  Google Scholar 

  16. Zhang Y P, Brown A W, Xiao M. Opening four-wave mixing and six-wave mixing channels via dual electromagnetically induced transparency windows. Phys. Rev. Lett., 2007, 99: 123603.

    Article  ADS  Google Scholar 

  17. Zhang Y P, Anderson B, Brown A W, Xiao M. Competition between two four-wave mixing channels via atomic coherence. Appl. Phys. Lett., 2007, 91: 061113.

    Article  ADS  Google Scholar 

  18. Zhang Y P, Brown A W, Xiao M. Observation of interference between four-wave mixing and six-wave mixing. Opt. Lett., 2007, 32: 1120–1122.

    Article  ADS  Google Scholar 

  19. Lukin M D, Yelin S F, Fleischhauer M, et al. Quantum interference effects induced by interacting dark resonances. Phys. Rev. A, 1999, 60: 3225–3228.

    Article  ADS  Google Scholar 

  20. Yan M, Rickey E G, Zhu Y F. Observation of doubly dressed states in cold atoms. Phys. Rev. A, 2001, 64: 013412.

    Article  ADS  Google Scholar 

  21. Boyd R W. Nonlinear Optics. New York: Academic Press, 1992.

    Google Scholar 

  22. Zuo Z C, Sun J, Liu X, et al. Generalized n-photon resonant 2n-wave mixing in an (n+1)-level system with phase-conjugate geometry. Phys. Rev. Lett., 2006, 97: 193904.

    Article  ADS  Google Scholar 

  23. Zhang Y P, Xiao M. Generalized dressed and doubly-dressed multiwave mixing. Opt. Exp., 2007, 15: 7182–7189.

    Article  ADS  Google Scholar 

  24. Zhang Y P, Xiao M. Enhancement of six-wave mixing by atomic coherence in a four-level inverted Y system. Appl. Phys. Lett., 2007, 90: 111104.

    Article  ADS  Google Scholar 

  25. Joshi A, Xiao M. Generalized dark-state polaritons for photon memory in multilevel atomic media. Phys. Rev. A, 2005, 71: 041801.

    Article  ADS  Google Scholar 

  26. Zhang Y P, Anderson B, Xiao M. Coexistence of four-ave, six-wave and eight-wave mixing processes in multi-dressed atomic systems. J. Phys. B, 2008, 41: 045502

    Article  ADS  Google Scholar 

  27. Du S W, Wen J M, Rubin M H, et al. Four-Wave Mixing and Biphoton Generation in a Two-Level System. Phys. Rev. Lett., 2007, 98: 053601. Du S W, Oh E, Wen J M, Rubin M H. Four-wave mixing in three-level systems: Interference and entanglement. Phys. Rev. A., 2007, 76: 013803.

    Article  ADS  Google Scholar 

  28. Nie Z Q, Zheng H B, Li P Z, et al. Interacting multiwave mixing in a five-level atomic system. Phys. Rev. A, 2008, 77: 063829.

    Article  ADS  Google Scholar 

  29. Wu Y, Deng L. Ultraslow Optical Solitons in a Cold Four-State Medium. Phys Rev. Lett., 2004, 93: 143904.

    Article  ADS  Google Scholar 

  30. Wu Y, Saldana J, Zhu Y F. Large enhancement of four-wave mixing by suppression of photon absorption from electromagnetically induced transparency. Phys. Rev. A, 2003, 67: 013811.

    Article  ADS  Google Scholar 

  31. Moll K D, Homoelle D, Gaeta A L, et al. Conical Harmonic Generation in Isotropic Materials. Phys. Rev. Lett., 2002, 88: 153901.

    Article  ADS  Google Scholar 

  32. Joshi A, Xiao M. Phase gate with a four-level inverted-Y system. Phys. Rev. A, 2005, 72: 062319.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Higher Education Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Multi-dressed MWM Processes. In: Multi-Wave Mixing Processes. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89528-2_8

Download citation

Publish with us

Policies and ethics