Skip to main content

Biomedical Modeling in Tele-Immersion

  • Chapter
Digital Human Modeling

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4650))

  • 1027 Accesses

Abstract

The major goal of this research is to develop a networked collaborative surgical system for tele-immersive consultation, surgical pre-planning, implant design, post operative evaluation and education. Tele-immersion enables users in different locations to collaborate in a shared, virtual, or simulated environment as if they are in the same room.

The process of implant design begins with CT data of the patient and the Personal Augmented Reality Immersive System (PARISTM). The implant is designed by medical professionals in tele-immersive collaboration. In the PARIS augmented reality system the user’s hands and the virtual images appear superimposed in the same volume so the user can see what he is doing. A haptic device supplies the sense of touch by applying forces to a stylus that the medical modeler uses to form the implant. After the virtual model of the implant is designed, the data is sent via network to a stereolithography rapid prototyping system that creates the physical implant model. After implant surgery, the patient undergoes a postoperative CT scan and results are evaluated and reviewed over the tele-immersive consultation system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dujovny, M., Evenhouse, R., Agner, C., Charbel, F.T., Sadler, L., McConathy, D.: Preformed prosthesis from computed tomography data: Repair of large calvarial defects. In: Benzel, E.C., Rengachary, S.R. (eds.) Calvarial and Dural Reconstructuion. American Association of Neurological Surgeons, Park Ridge, vol. Ill, pp. 77–88 (1999)

    Google Scholar 

  2. Benzel, E.C., Alberstone, C.D.: Calvarial and Dural Reconstructuion. In: Cranioplasty Materials. American Association of Neurological Surgeons, Park Ridge, vol. Ill (1999)

    Google Scholar 

  3. Agner, C., Dujovny, M., Evenhouse, R., Charbel, F.T., Sadler, L.: Stereolithography for posterior fossa cranioplasty. Skull Base Surg. 8(2), 81–86 (1998)

    Article  Google Scholar 

  4. Leigh, J., DeFanti, T., Johnson, A., Brown, M., Sandin, D.: Global tele-immersion: Better than being there. In: Proceedings of ICAT 1997, 7th Annual International Conference on Artificial Reality and Tele-Existence Virtual Reality Society of Japan, University of Tokyo, Japan, pp. 10–17 (December 1997)

    Google Scholar 

  5. Johnson, A., Sandin, D., Dawe, G., Qiu, Z., Thongrong, S., Plepys, D.: Developing the paris: Using the cave to prototype a new vr display. In: CDROM Proceedings of IPT 2000: Immersive Projection Technology Workshop, Ames, IA (June 2000)

    Google Scholar 

  6. http://www.sensable.com/haptic-phantom-desktop.htm

  7. Scharver, C., Evenhouse, R., Johnson, A., Leigh, J.: Designing cranial implants in a haptic augment reality environment. Communications of the ACM 27(8), 32–38 (2004)

    Article  Google Scholar 

  8. Chen, H., Sun, H.: Real-time haptic sculpting in virtual volume space. In: Proceedings of the ACM symposium on Virtual reality software and technology, Hong Kong, China, pp. 81–88. ACM Press, New York (2002)

    Google Scholar 

  9. Dachille IX, F., Qin, H., Kaufman, A., El-Sana, J.: Haptic sculpting of dynamic surfaces. In: Proceedings of the 1999 symposium on Interactive 3D graphics, Atlanta, Georgia, United States, pp. 103–110. ACM Press, New York (1999)

    Chapter  Google Scholar 

  10. Jagnow, R., Dorsey, J.: Virtual Sculpting with Haptic Displacement Maps. In: Proc. Graphics Interface, pp. 125–132 (May 2002)

    Google Scholar 

  11. Iwata, H., Noma, H.: Volume haptization. In: IEEE 1993 Symposium on Research Frontiers in Virtual Reality, pp. 16–23 (October 1993)

    Google Scholar 

  12. Lundin, K., Ynnerman, A., Gudmundsson, B.: Proxy based haptic feedback from volumetric density data. In: EuroHaptics 2002, Edinburgh, UK (2002)

    Google Scholar 

  13. Petersik, A., Pflesser, B., Tiede, U., Höhne, K.-H., Leuwer, R.: Realistic haptic interaction in volume sculpting for surgery simulation. In: Ayache, N., Delingette, H. (eds.) IS4TM 2003. LNCS, vol. 2673, pp. 194–202. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Ai, Z., Evenhouse, R., Rasmussen, M.: Haptic rendering of volumetric data for cranial implant modeling. In: The 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Shanghai, China (September 2005)

    Google Scholar 

  15. Ai, Z., Evenhouse, R., Leigh, J., Charbel, F., Rasmussen, M.: New tools for sculpting cranial implants in a shared haptic augmented reality environment. Stud. Health Technol Inform. 119, 7–12 (2006)

    Google Scholar 

  16. Ackerman, M.J.: Accessing the visible human project. D. Lib. Mag (October 1995)

    Google Scholar 

  17. Kajiya, J.T., Von Herzen, B.P.: Ray tracing volume densities. In: Proceedings of the 11th annual conference on Computer graphics and interactive techniques, pp. 165–174. ACM Press, New York (1984)

    Google Scholar 

  18. Rezk-Salama, C., Engel, K., Bauer, M., Greiner, G., Ertl, T.: Interactive volume rendering on standard pc graphics hardware using multi-textures and multi-stage-rasterization. In: Eurographics / SIGGRAPH Workshop on Graphics Hardware 2000, pp. 109–118. Addison-Wesley Publishing Company, Inc., Reading (2000)

    Google Scholar 

  19. Cabral, B., Cam, N., Foran, J.: Accelerated volume rendering and tomographic reconstruction using texture mapping hardware. In: ACM Symp. on Vol. Vis. (1994)

    Google Scholar 

  20. Magallon, M., Hopf, M., Ertl, T.: Parallel volume rendering using pc graphics hardware. In: Ninth Pacific Conference on Computer Graphics and Applications (PG 2001), Tokyo, Japan (2001)

    Google Scholar 

  21. Ai, Z., Dech, F., Rasmussen, M., Silverstein, J.C.: Radiological tele-immersion for next generation networks. Studies in Health Technology and Informatics 70, 4–9 (2000)

    Google Scholar 

  22. Dech, F., Ai, Z., Silverstein, J.C.: Manipulation of volumetric patient data in a distributed virtual reality environment. Studies in Health Technology and Informatics 81, 119–125 (2001)

    Google Scholar 

  23. SensAble Technologies, Inc. 3D Touch SDK - OpenHaptics Toolkit Programmer’s Guide (1999-2004)

    Google Scholar 

  24. Cruz-Neira, C., Sandin, D.J., De Fanti, T.A.: Surround-screen projection-based virtual reality: The design and implementation of the CAVE. In: Proc. Siggraph 1993, pp. 135–142. ACM Press, New York (1993)

    Google Scholar 

  25. Schroeder, W., Martin, K., Lorensen, B.: The Visualization Toolkit: An Object-Oriented Approach To 3D Graphics. Prentice Hall PTR, Englewood Cliffs (1996)

    Google Scholar 

  26. http://www.gtkmm.org

  27. http://www.interlinkelectronics.com/products/retail/remotepointrf.htm

  28. Leigh, J., Yu, O., Schonfeld, D., Ansari, R., et al.: Adaptive networking for tele-immersion. In: Proc. Immersive Projection Technology/Eurographics Virtual Environments Workshop (IPT/EGVE), Stuttgart, Germany (May 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ai, Z., Evenhouse, R., Leigh, J., Charbel, F., Rasmussen, M.L. (2008). Biomedical Modeling in Tele-Immersion. In: Cai, Y. (eds) Digital Human Modeling. Lecture Notes in Computer Science(), vol 4650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89430-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89430-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89429-2

  • Online ISBN: 978-3-540-89430-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics