Skip to main content

Motion Detection Chips for Robotic Platforms

  • Chapter
  • First Online:
Flying Insects and Robots

Abstract

The on-board requirements for small, light, low-power sensors, and electronics on autonomous micro-aerial vehicles limit the computational power and speed available for processing sensory signals. The sensory processing on these platforms is usually inspired by the sensory information extracted by insects from their world, in particular optic flow. This information is also useful for distance estimation of the vehicle from objects in its path. Custom Very Large Scale Integrated (VLSI) sensor chips which perform focal-plane motion estimation are beneficial for such platforms because of properties including compactness, continuous-time operation, and low-power dissipation. This chapter gives an overview of the various monolithic analog VLSI motion detection/optic flow chips that have been designed over the last 2 decades. We contrast the pros and cons of the different algorithms that have been implemented and we identify promising chip architectures that are suitable for flying platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adelson, E., Bergen, J.: Spatio-temporal energy models for the perception of motion. Journal of the Optical Society of America A 2, 284–299 (1985)

    Article  Google Scholar 

  2. Andreou, A., Strohbehn, K., Jenkins, R.: Silicon retina for motion computation. IEEE International Symposium on Circuits and Systems pp. 1373–1376 (1991)

    Google Scholar 

  3. Barlow, H.B., Levick, W.R.: The mechanism of directionally selective units in rabbit’s retina. Journal of Physiology 178, 477–504 (1965)

    Google Scholar 

  4. Benson, R., Delbruck, T.: Direction selective silicon retina that uses null inhibition. Advances in Neural Information Processing Systems 4, 756–763 (1992)

    Google Scholar 

  5. Blanes, C.: Appareil visuel pour la navigation vue d’un robot mobile. Ms thesis in neuroscience, Univ. of Aix-Marseille II, Marseille, France (1986)

    Google Scholar 

  6. Debruck, T.: Silicon retina with correlation-based, velocity tuned pixels. IEEE Transactions on Neural Networks 4, 529–541 (1993)

    Article  Google Scholar 

  7. Delbruck, T., Mead, C.: Adaptive photoreceptor circuit with wide dynamic range. IEEE International Symposium on Circuits and Systems IV, 339–342 (1994)

    Google Scholar 

  8. Deutschmann, R.A., Koch, C.: Compact analog VLSI 2-D velocity sensor. IEEE International Conference on Intelligent Vehicles 1, 359–364 (1998)

    Google Scholar 

  9. Deutschmann, R.A., Koch, C.: Compact real-time 2-D gradient based analog VLSI motion sensor. Proceedings of SPIE International Conference on Advanced Focal Plan Array and Electronic Cameras II 3410, 98–108 (1998)

    Google Scholar 

  10. Egelhaaf, M., Borst, A.: Motion computation and visual orientation in flies. Comparative Biochemistry and Physiology 104A, 659–673 (1993)

    Google Scholar 

  11. Etienne-Cummings, R., Fernando, S., Takahashi, N., Shtonov, V., Van der Spiegel, J., Mueller, P.: A new temporal domain optical flow measurement technique for focal plane VLSI implementation. IEEE Proceedings on Computer Architectures for Machine Perception pp. 241–250 (1993)

    Google Scholar 

  12. Franceschini, N., Blanes, C., Oufar, L.: Appareil de mesure passif et sans contact de la vitesse d’un objet quelconque. Dossier technique Nb 51549, ANVAR/DVAR, Paris (1986)

    Google Scholar 

  13. Franceschini, N., Pichon, J.M., Blanes, C.: From insect vision to robot vision. Philosophical Transactions of the Royal Society of London. Series B 337, 238–294 (1992)

    Article  Google Scholar 

  14. Gottardi, M., Yang, W.: A CCD/CMOS image motion sensor. International Solid State Circuits Conference pp. 194–195 (1993)

    Google Scholar 

  15. Gruev, V., Etienne-Cummings, R.: Active pixel sensor with on-chip normal flow computation on the read out. IEEE International Conference on Electronics, Circuits, and Systems pp. 215–218 (2004)

    Google Scholar 

  16. Harrison, R.R.: A biologically-inspired analog IC for visual collision detection. IEEE Transactions on Circuits and Systems I 52, 2308–2318 (2005)

    Article  Google Scholar 

  17. Harrison, R.R., Koch, C.: A robust analog VLSI motion sensor. Autonomous Robots 7, 211–224 (1999)

    Article  Google Scholar 

  18. Hassenstein, B., Reichardt, W.: Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Russelkafers Chlorophanus. Zeitschrift fur Naturforschung 11b, 513–524 (1956)

    Google Scholar 

  19. Hausen, K.: Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells – Receptive-field organization and response characteristics. Biological Cybernetics 46(1), 67–79 (1982)

    Article  Google Scholar 

  20. Higgins, C., Korrapti, S.: An analog VLSI motion energy sensor based on the Adelson-Bergen algorithm. International ICSC Symposium on Biologically-Inspired Systems (2000)

    Google Scholar 

  21. Higgins, C.M., Pant, V., Deutschmann, R.: Analog VLSI implementation of spatio-temporal frequency tuned visual motion algorithms. IEEE Transactions on Circuits and Systems – I 52(3), 489–502 (2005)

    Article  Google Scholar 

  22. Horiuchi, T., Lazzaro, J., Moore, A., Koch, C.: A delay line based motion detection chip. Advances in Neural Information Processing Systems 3, 406–412 (1991)

    Google Scholar 

  23. Horn, B., Schunk, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  24. Kramer, J.: Compact integrated motion sensor with three-pixel interaction. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 455–460 (1996)

    Article  Google Scholar 

  25. Kramer, J., Sarpeshkar, R., Koch, C.: An analog VLSI velocity sensor. IEEE International Symposium on Circuits and Systems pp. 413–416 (1995)

    Google Scholar 

  26. Kramer, J., Sarpeshkar, R., Koch, C.: Pulse-based analog VLSI velocity sensors. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 44 (2), 86–101 (1997)

    Article  Google Scholar 

  27. Krapp, H., Hengstenberg, R.: Estimation of self-motion by optic flow processing in single visual interneurons. Letters to Nature 384, 463–466 (1996)

    Article  Google Scholar 

  28. Liu, S.C.: Silicon photoreceptors with controllable adaptive filtering properties. In: C. G, M. Bayoumi (eds.) Learning on Silicon, pp. 67–78. Kluwer Academic Publishers, Norwell, MA (1999)

    Google Scholar 

  29. Liu, S.C.: A neuromorphic aVLSI model of global motion processing in the fly. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing 47(12), 1458–1467 (2000)

    Google Scholar 

  30. Lyon, R.: The optical mouse, and an architectural methodology for smart digital sensors. CMU Conference on VLSI Structures and Computations pp. 1–19 (1981)

    Google Scholar 

  31. Mehta, S., Etienne-Cummings, R.: Normal optical flow chip. IEEE International Symposium on Circuits and Systems 4, 784–787 (2003)

    Google Scholar 

  32. Mehta, S., Etienne-Cummings, R.: A simplified normal optical flow CMOS camera. IEEE Transactions on Circuits and Systems I 53(6), 1223–1234 (2006)

    Article  Google Scholar 

  33. Meitzler, R.C., Strohbehn, K., Andreou, A.G.: A silicon retina for 2-D position and motion computation. IEEE International Symposium on Circuits and Systems III, 2096–2099 (1995)

    Google Scholar 

  34. Moeckel, R., Liu, S.C.: Motion detection circuits for a time-to-travel algorithm. IEEE International Symposium on Circuits and Systems pp. 3079–3082 (2007)

    Google Scholar 

  35. Pant, V., Higgins, C.M.: A biomimetic focal plane speed computation architecture. Proceedings of the Computational Optical Sensing and Imaging Conference (2007)

    Google Scholar 

  36. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory information by the central nervous system. Sensory Communication pp. 303–317 (1961)

    Google Scholar 

  37. Reichel, L., Liechti, D., Presser, K., Liu, S.C.: Range estimation on a robot using neuromorphic motion sensors. Robotics and Autonomous Systems 51(2–3), 167–174 (2005)

    Google Scholar 

  38. Santen, v.J., Sperling, G.: A temporal covariance model of motion perception. Journal of the Optical Society of America A 1, 451–473 (1984)

    Article  Google Scholar 

  39. Sarpeshkar, R., Bair, W., Koch, C.: Visual motion computation in analog VLSI using pulses. Advances in Neural Information Processing Systems 5, 781–788 (1993)

    Google Scholar 

  40. Schiller, P.H., Finlay, B.L., Volman, S.F.: Qualitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. Journal of Neurophysiology 39, 1288–1319 (1976)

    Google Scholar 

  41. Serrano-Gotarredona, T., Linares-Barranco, B.: A new 5-parameter MOS transistor mismatch model. IEEE Electron Device Letters 21(1), 37–39 (2000)

    Article  Google Scholar 

  42. Srinivasan, M.V.: Generalized gradient schemes for the measurement of two dimensional image motion. Biological Cybernetics 63, 421–431 (1990)

    Article  MATH  Google Scholar 

  43. Srinivasan, M.V.: An image-interpolation technique for the computation of optic flow and egomotion. Biological Cybernetics 71, 401–416 (1994)

    Article  MATH  Google Scholar 

  44. Stocker, A., Douglas, R.: Computation of smooth optical flow in a feedback connected analog network. Advances in Neural Information Processing Systems 11, 706–712 (1999)

    Google Scholar 

  45. Stocker, A.A.: An improved 2D optical flow sensor for motion segmentation. IEEE International Symposium on Circuits and Systems 2, 332–335 (2002)

    Google Scholar 

  46. Tanner, J., Mead, C.: An integrated analog optical motion sensor. VLSI Signal Processing 2, 59–76 (1986)

    Google Scholar 

  47. Ullman, S.: Analysis of visual motion by biological and computer systems. IEEE Computer 14, 57–69 (1981)

    Google Scholar 

  48. Zufferey, J., Klaptocz, A., Beyeler, A., Nicoud, J., Floreano, D.: A 10-gram microflyer for vision-based indoor navigation. IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3267–3272 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rico Moeckel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Moeckel, R., Liu, SC. (2009). Motion Detection Chips for Robotic Platforms. In: Floreano, D., Zufferey, JC., Srinivasan, M., Ellington, C. (eds) Flying Insects and Robots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89393-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89393-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89392-9

  • Online ISBN: 978-3-540-89393-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics