Skip to main content

Architecture of a Quantum Multicomputer Implementing Shor’s Algorithm

  • Conference paper
Theory of Quantum Computation, Communication, and Cryptography (TQC 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5106))

Included in the following conference series:

Abstract

We have created the architecture of a quantum multicomputer and analyzed its performance for running Shor’s algorithm for factoring large numbers. In this paper, we combine fault tolerance techniques with performance goals for our architecture, which uses a linear interconnect and six logical qubits per node. Our performance target of factoring a 1,024-bit number in one month requires teleporting 6.2 logical qubits per second on each link in the system, which translates to 3,300 physical teleportations per second on each link. Starting from a Bell state with fidelity F = 0.638, as a qubus-based cavity QED interconnect might generate with a qubit-to-qubit loss of 3.4dB, about 1.5 million physical entanglement attempts per second are enough to reach this level of performance. Our analysis suggests that systems capable of solving classically intractable problems are well within reach; once basic technological hurdles are overcome, the multicomputer architecture supports rapid scaling to very large systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grover, L.K.: Quantum telecomputation (April 1997), http://arXiv.org/quant-ph/9704012

  2. Cirac, J.I., Ekert, A., Huelga, S.F., Macchiavello, C.: Distributed quantum computation over noisy channels. Physical Review A 59, 4249 (1999)

    Article  MathSciNet  Google Scholar 

  3. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Physical Review A 56(2), 1201–1204 (1997)

    Article  Google Scholar 

  4. Buhrman, H., Röhrig, H.: Distributed Quantum Computing. In: Mathematical Foundations of Computer Science 2003, pp. 1–20. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6), 661–663 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ribordy, G., Brendel, J., Gautier, J.D., Gisin, N., Zbinden, H.: Long-distance entanglement-based quantum key distribution. Physical Review A 63(1), 12309 (2000)

    Article  Google Scholar 

  7. Chuang, I.L.: Quantum algorithm for distributed clock synchronization. Physical Review Letters 85(9), 2006–2009 (2000)

    Article  Google Scholar 

  8. Van Meter, R., Munro, W.J., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. ACM Journal of Emerging Technologies in Computing Systems 3(4), 17 (2008)

    Article  Google Scholar 

  9. Van Meter III, R.D.: Architecture of a Quantum Multicomputer Optimized for Shor’s Factoring Algorithm. PhD thesis, Keio University (2006) arXiv:quant-ph/0607065

    Google Scholar 

  10. Clark, S.M., Fu, K.M.C., Ladd, T.D., Yamamoto, Y.: Quantum computers based on electron spins controlled by ultra-fast, off-resonant, single optical pulses. Physical Review Letters 99, 040501 (2007)

    Article  Google Scholar 

  11. Oi, D.K.L., Devitt, S.J., Hollenberg, L.C.L.: Scalable error correction in distributed ion trap computers. Physical Review A 74, 052313 (2006)

    Article  Google Scholar 

  12. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147–153 (1996), http://arXiv.org/quant-ph/9511018

    Article  MathSciNet  Google Scholar 

  13. Van Meter, R., Nemoto, K., Munro, W.J.: Communication links for distributed quantum computation. IEEE Transactions on Computers 56(12), 1643–1653 (2007)

    Article  MathSciNet  Google Scholar 

  14. Lenstra, A., Tromer, E., Shamir, A., Kortsmit, W., Dodson, B., Hughes, J., Leyland, P.: Factoring estimates for a 1024-bit RSA modulus. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 55–74. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Spiller, T.P., Nemoto, K., Braunstein, S.L., Munro, W.J., van Loock, P., Milburn, G.J.: Quantum computation by communication. New Journal of Physics 8, 30 (February 2006)

    Google Scholar 

  16. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proc. 35th Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press, Los Alamitos (1994)

    Chapter  Google Scholar 

  17. Ekert, A., Jozsa, R.: Quantum computation and Shor’s factoring algorithm. Review of Modern Physics 68(3), 733–753 (1996)

    Article  MathSciNet  Google Scholar 

  18. Kendon, V.M., Munro, W.J.: Entanglement and its role in Shor’s algorithm. Quantum Information and Computation 6(7), 630–640 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Beckman, D., Chari, A.N., Devabhaktuni, S., Preskill, J.: Efficient networks for quantum factoring. Phys. Rev. A 54, 1034–1063 (1996), http://arXiv.org/quant-ph/9602016

    Article  MathSciNet  Google Scholar 

  20. Kunihiro, N.: Practical running time of factoring by quantum circuits. In: Proc. ERATO Conference on Quantum Information Science (EQIS 2003) (September 2003)

    Google Scholar 

  21. Van Meter, R., Itoh, K.M.: Fast quantum modular exponentiation. Physical Review A 71(5), 052320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. van Loock, P., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Physical Review Letters 96, 240501 (2006)

    Article  Google Scholar 

  23. Gunn, C.: CMOS photonics for high-speed interconnects. IEEE Micro 26(2), 58–66 (2006)

    Article  Google Scholar 

  24. Ladd, T.D.: private communication (February 2008)

    Google Scholar 

  25. Fowler, A.G.: Constructing arbitrary single-qubit fault-tolerant gates. quant-ph/0411206 (December 2005)

    Google Scholar 

  26. Jiang, L., Taylor, J.M., Sorensen, A.S., Lukin, M.D.: Scalable quantum networks based on few-qubit registers. quant-ph/0703029 (2007)

    Google Scholar 

  27. Kim, J., Kim, C.: Integrated Optical Approach to Trapped Ion Quantum Computation. eprint arXiv: 0711.3866 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Van Meter, R., Munro, W.J., Nemoto, K. (2008). Architecture of a Quantum Multicomputer Implementing Shor’s Algorithm. In: Kawano, Y., Mosca, M. (eds) Theory of Quantum Computation, Communication, and Cryptography. TQC 2008. Lecture Notes in Computer Science, vol 5106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89304-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-89304-2_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-89303-5

  • Online ISBN: 978-3-540-89304-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics