Skip to main content

Stellar and interstellar precursor missions

  • Chapter
Future Spacecraft Propulsion Systems

Part of the book series: Springer Praxis Books ((ASTROENG))

  • 2161 Accesses

Abstract

Staggering as they may seem to us, interplanetary distances are puny compared to those to reach stars. Our Solar System is located about two-thirds of the way from the center of our Galaxy towards the rim—about 25,000 light-years from the galactic centre, on the inner edge of the Orion arm. Our Galaxy has a diameter of approximately 100,000 light-years and is roughly shaped as a luminous disk 12,000 light-years thick near its hub, decreasing to about 1,000 light-years near the rim of its “arms”. The presence of a black hole of mass corresponding to 2 to 3 million Sun masses, and long believed to be at its center [Cohen et al., 2003], seems confirmed by recent radiowave measurements using very long baseline interferometry [Reynolds, 2008].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8.14 Bibliography

  • AIAA (2004) “Special Project Report — Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems, AIAA SP-108-2004, Reston, VA.

    Google Scholar 

  • Anile, A., and Choquet-Bruhat, Y. (eds) (1987) Relativistic Fluid Dynamics, Springer-Verlag, Berlin.

    Google Scholar 

  • Auweter-Kurtz, M., and Kurtz, H. (2008) “High Power and High Thrust Density Electric Propulsion for In-Space Transportation”, in: Nuclear Space Power and Propulsion Systems, edited by C. Bruno, AIAA Progress in Astronautics and Aeronautics, Vol. 225, AIAA, Reston, VA, Ch. 4.

    Google Scholar 

  • Baross, J.A. et al. (Eds.) (2007), The Limits of Organic Life in Planetary Systems, National Research Council of the National Academies, National Academies Press, Washington, DC, 2007.

    Google Scholar 

  • Basov, N.G. and Krokhin, O.N. (1964) “Laser-initiated Thermonuclear Fusion” (in Russian), Sov. Phys. JETP., Vol. 19, 123. Also in English in IEEE (1968), J. Quantum Elect., Vol. 4, 864.

    Google Scholar 

  • Bond, A. et al. (1978) “Project Daedalus: The Final Report on the BIS Starship Study”, J. British Interplanetary Society (JBIS), Interstellar Studies, Supplement.

    Google Scholar 

  • Borowski, S.K. (1987) “A Comparison of Fusion/Antiproton Propulsion Systems for Interplanetary Travel”, AIAA Paper 87-1814.

    Google Scholar 

  • Borowski, S.K. (1995) “Comparison of Fusion/Antiproton Propulsion Systems for Interplanetary Travel”, in Fusion Energy for Space Propulsion, edited by T. Kammash, Progress in Astronautics and Aeronautics Series, Vol. 167, AIAA, Washington, DC.

    Google Scholar 

  • Britt, R.R. (2005) “NASA Voyager 1 Team Says Spacecraft Has Reached Solar System’s Outer Layer”, Space News, May 30, 2005, p. 17.

    Google Scholar 

  • Brown, P. (1989) “Apparatus for Direct Conversion of Radioactive Decay Energy to Electrical Energy”, US Patent No. 4,835,433.

    Google Scholar 

  • Bruno, C., and Accettura, A. (Eds.) (2008) Advanced Propulsion Systems and Technologies: Today to 2020, Progress in Aeronautics and Astronautics Series Vol. 223, AIAA, Reston, VA.

    Google Scholar 

  • Bussard, R.W. (1960) “Galactic Matter and Interstellar Flight”, Acta Astronautica, Vol. VI, pp. 179–195.

    Google Scholar 

  • Bussard, R.W. (1990) “Fusion as Electric Propulsion”, Journal of Propulsion, Vol. 6, No. 5, pp. 567–574.

    Article  Google Scholar 

  • Bussard, R.W., and Jameson, L.W. (1993) “The QED Engine Spectrum: Fusion-Electric Propulsion for Airbreathing to Interstellar Flight”, paper AIAA 93-2006, presented at the 29th Joint Propulsion Conference, Monterey, CA, June 28–30.

    Google Scholar 

  • Bussard, R.W., Jameson, L.W., and Froning, H.D. (1993) “The QED Engine: Fusion-Electric Propulsion for CIS-Oort/Quasi-Interstellar (QIS) Flight”, paper AIAA.4.1-93-708, presented at the 44th IAF Congress, Graz, Austria, October 16–22.

    Google Scholar 

  • Carpenter, S.A., and Brennan, K.M. (1999) “Overview and Status of a Mirror Fusion Propulsion System Design Study”, Acta Astronautica, Vol. 44, No. 7–12, 471–506.

    Article  Google Scholar 

  • Casali, D., and Bruno, C. (2004) “Superconducting Materials Applied to Electric Propulsion”, AIAA Journal of Spacecrafts and Rockets, Vol. 41, No. 4, July–August 2004, pp. 671–676.

    Article  Google Scholar 

  • Cassenti, B.N. (2004) “Engineering Challenges in Inertial Confinement Fusion Propulsion”, AIAA Paper 2004-3533, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 11–14, 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Cassenti, B.N., and Coreano, L. (2004) “The Interstellar Ramjet”, AIAA Paper 2004-3568, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 11–14, 2004, Fort Lauderdale, FL.

    Google Scholar 

  • Cesarone, R.J., Sergeyevsky, A.B., and Kerridge, S.J. (1984) “Prospects for the Voyager Extra-Planetary and Interstellar Mission”, J. British Interplanetary Society, Vol. 37, pp. 99–116.

    Google Scholar 

  • Chen, F.F. (1985) Introduction to Plasma Physics and Controlled Fusion (Vol. I and II), Plenum Press, New York.

    Google Scholar 

  • Cohen, E.R., Lide, D.R., and Trigg, G.L. (2003) Physics Desk Reference, 3rd edn., Springer-Verlag, New York, p. 130.

    Google Scholar 

  • Crawford, I. (2000) “Where Are They?”, Scientific American, Vol. 283, No. 7, pp. 28–33.

    Google Scholar 

  • Dawson, J.M. (1964) Physics of Fluids, Vol. 7, p. 981.

    Article  Google Scholar 

  • Daiber, J.W., Hertzberg, A., and Wittliff, C.E. (1966) “Laser-Generated Implosions”, Physics of Fluids, Vol. 9, No. 3, pp. 617–619.

    Article  Google Scholar 

  • Dinerman, T. (2008) “Hitching a Ride to the Oort Cloud”, The Space Review, August 18, 2008. Available at http://www.thespacereview.com/article/1189/1

    Google Scholar 

  • Dyson, G. (2002) Project Orion, Allen Lane/Penguin Press, London.

    Google Scholar 

  • Choueiri, E. (2002) Personal communication.

    Google Scholar 

  • Einstein, A. (1916) Uber die spezielle und allgemeine Relativitaetstheorie (gemeinvestaendlich) (Sections 11–16), Newton-Compton Publisher, Rome.

    Google Scholar 

  • Encrenaz, T., Bribing, J.P., Blanc, M., Barucci, M.-A., Roques, F. and Zoucka, P.H. (2004) The Solar System (Chapter 14, Table 14.1), Springer, Berlin.

    Google Scholar 

  • Englert, G.W. (1962) “Toward Thermonuclear Rocket Propulsion”, New Scientist, Vol. 16, No. 307, pp. 16–18.

    Google Scholar 

  • Ewig. R., and Andrews, D. (2003) “MiniMagOrion: A Pulsed Nuclear Rocket for Crewed Solar System Exploration”, AIAA 2003-4525, presented at the 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Huntsville, AL, July 2003.

    Google Scholar 

  • Forward, R.L. (1985) “Antiproton Annihilation Propulsion”, J. Propulsion, Vol. 1, No. 5, 570–374.

    Article  Google Scholar 

  • Froning, H.D., and Bussard, R.W. (1998) “Aneutronic Fusion Propulsion for Earth-to-Orbit and Beyond”, in Proc. STAIF 1998, AIP Publication CP-420, American Institute of Physics, Melville, NY, pp. 1289–1294.

    Google Scholar 

  • Froning, H.D., Miley, G.H., Luo, N., Yang, Y., Y., Momota, H., and Burton, E. (2005), “Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight”, in Proc. STAIF 2005, AIP Conference Proceedings Vol. 746, American Institute of Physics, Melville, NY, pp. 1339–1344.

    Google Scholar 

  • Gaidos, G., Lahio, J., Lewis, R.A., Dundore, B., Fulmer, J., and Chakrabarthi, S. (1998) “Antiproton-catalyzed Microfission/Fusion Propulsion Systems for Exploration of the Outer Solar System and Beyond”, in Proc. STAIF 1998, AIP publication CP-420, American Institute of Physics, Melville, NY, pp. 1365–1372.

    Google Scholar 

  • Gurnett, D.A., Kurth, W.S., Allendorf, S.C., and Poynter, R.L. (1993) “Radio Emission from the Heliopause Triggered by an Interplanetary Shock”, Science, Vol. 262, pp. 198–203.

    Article  Google Scholar 

  • Hahn, J. (2005) “When Giants Roamed”, Nature, Vol. 435, pp. 432–433. Complete articles on early Solar System formation and the role of the Kuiper belt can be found in the three papers by Tsiganis et al., Morbidelli et al. and Gomes et al. in the same issue, pp. 459–469.

    Article  Google Scholar 

  • Harwit, M. (1973) Astrophysical Concepts, Wiley, New York.

    Google Scholar 

  • Hecht, J. (2008) “First Object Seen from Solar System’s Inner Oort Cloud”, NewScientist.com news service, August 18. 2008. Available at http://space.newscientist.com/article.ns?id=dn14548&print=true

    Google Scholar 

  • Hill, P.G., and Peterson, C.R. (1970) Mechanics and Thermodynamics of Propulsion, 1st edn, Addison-Wesley, Reading, MA, Ch. 15, p. 471.

    Google Scholar 

  • Holzscheiter, M.H., Lewis, R.A., Rochet, J., and Smith, G.A. (1996) “Production and Trapping of Antimatter for Space Propulsion Applications”, AIAA 96-2786, presented at the 32nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Lake Buena Vista, FL, July 1–3, 1996.

    Google Scholar 

  • Hsu, J. (2008) “The Future of Space Robots”, SpaceCom, July 2. Available at http://www.space.com/businesstechnology/080702-wall-e-explorers.html

    Google Scholar 

  • Huba, J.D. (2002) “NRL Plasma Formulary”, NRL/PU/6790-02-450, The Office of Naval Research, Washington, DC, p. 44.

    Google Scholar 

  • Jarboe, T.R. (1994) “Review of Spheromak Research”, Plasma Physics Controlled Fusion, Vol. 36, pp. 945–990.

    Article  Google Scholar 

  • Jewitt, D.C. and Luu, J. (2004) “Crystalline water ice on the Kuiper belt object (50000) Quaoar”, Nature, Vol. 432, 9 December 2004, 731–733.

    Article  Google Scholar 

  • Jokipii, J.R. (2008) “A Shock for Voyager 2”, Nature, Vol. 454, No. 7200, 3 July, pp. 38–39. [This issue also contains five scientific articles on this subject.]

    Article  Google Scholar 

  • Kammash, T. (1995) “Principles of Fusion Energy Utilization in Space Propulsion”, in Fusion Energy for Space Propulsion, edited by T. Kammash, Progress in Astronautics and Aeronautics Series, Vol. 167, AIAA, Washington, DC.

    Google Scholar 

  • Kaufmann, III, W.J. (1993) Discovering the Universe, 3rd edn, W.H. Freeman, New York, Ch. 17 and Appendix 4.

    Google Scholar 

  • Kenyon, S.J. and Bromley, B.C. (2004) “Stellar encounters as the origin of distant Solar System objects in highly eccentric orbits”, Nature, Vol. 432, 2 December 2004, 598–602.

    Article  Google Scholar 

  • Kiang, N.Y. (2008) “The Color of Plants on Other Worlds”, Scientific American, Vol. 298, No. 4, April, pp. 28–35.

    Google Scholar 

  • Kulcinski, G.L., and Conn, R.W. (1974) “The Conceptual Design of a Tokamak Fusion Power Reactor, UWMAK-1”, The Campaigner, Vol. 7, No. 9–10, pp. 50–62.

    Google Scholar 

  • Lang, K.R. (1999) Astrophysical Formulae, 3rd edn, Springer-Verlag, Berlin, p. 145 et seq.

    Google Scholar 

  • Lawrence, T.J. (2008) “Nuclear-Thermal-Rocket Propulsion Systems”, in: Nuclear Space Power and Propulsion Systems, edited by C. Bruno, AIAA, Reston, VA, Ch. 2.

    Google Scholar 

  • Lawson, J.D. (1957) “Some criteria for power producing thermonuclear reactions” in the Proceedings of the Royal Society of London, Section B, Vol. 70, pp. 1–6.

    Google Scholar 

  • Leifer, S.D. (1999) “Reaching for the Stars”, Scientific American, Vol. 232, No. 2, pp. 74–75.

    Google Scholar 

  • Lerner, E.J. (2004) see www.lawrencevilleplasmaphysics.com.

    Google Scholar 

  • Lissauer, J. (1999) How Common are Habitable Planets?”, Nature, Vol. 402 Supplement, No. 6761, pp. C11–C14.

    Article  Google Scholar 

  • Luu, J.X., and Jewitt, D.C. (1996) “The Kuiper Belt”, in Scientific American, Vol. 274, No. 5, pp. 32–39.

    Article  Google Scholar 

  • Maccone, C. (2002) “The Sun as a Gravitational Lens: Proposed Space Missions, IPI Press, Aurora, CO, p. 1.

    Google Scholar 

  • March, P. (2004) Personal communication (email, November 4, 2004).

    Google Scholar 

  • Maslen, S.H. (1959) “Fusion for Space Propulsion”, Institute of Radio Engineers Transactions on Military Electronics, Vol. MIL-3, No. 2, pp. 52–57.

    Google Scholar 

  • Messerle, H.K. (1995) Magneto-Hydro-Dynamic Electrical Power Generation, Wiley, Chichester, UK.

    Google Scholar 

  • Metz, W.D. (1976) “Fusion Research (II): Detailed Reactor Studies Identify More Problems”, Science, Vol. 193, p. 38–40 and p. 76.

    Article  Google Scholar 

  • Mikellides, P.G. (2004) “Modeling and Analysis of a Megawatt-Class Magnetoplasmadynamic Thruster”, Journal of Propulsion and Power, Vol. 20, No. 21, pp. 204–210. See also the Proceedings of the “Technology and System Options towards Megawatt Level Electric Propulsion” Workshop, June 9–10, 2003, Lerici, Italy, alta@alta-space.com

    Article  Google Scholar 

  • Miley, G.H., Satsangi, A.J., DeMora, J., Javedani, J.B., Gu, Y., Burton, R.L., and Nakashima, H. (1995) “Innovative Technology for an Inertial Electrostatic Confinement Fusion Propulsion Unit”, in Fusion Energy for Space Propulsion, edited by T. Kammash, Progress in Astronautics and Aeronautics Series, Vol. 167, AIAA, Washington, DC, pp. 161–178.

    Google Scholar 

  • Miley, G., Bromley, B., Jurczyk, B., Stubbers, R., DeMora, J., Chacon, L., and Gu, Y. (1998) “Scaling of the Inertial Electrostatic Confinement (IEC) for Near-term Thrusters and Future Fusion Propulsion”, in Proc. STAIF 1998, AIP publication CP-420, American Institute of Physics, Melville, NY, pp. 1373–1375.

    Google Scholar 

  • Miller, A.L. (1981) Albert Einstein Special Theory of Relativity, Addison-Wesley, Reading, MA.

    Google Scholar 

  • Miyamoto, K (2007) Controlled Fusion and Plasma Physics, Taylor & Francis, Boca Raton, FL.

    Google Scholar 

  • Morgan, D.L. (1982) “Concepts for the Design of an Antimatter Annihilation Rocket”, J. British Interplanetary Soc., Vol. 135, 405–408.

    Google Scholar 

  • Mukhin, K.N. (1987) Experimental Nuclear Physics, Vol. 1: Physics of Atomic Nucleus, Mir Publishers, Moscow, p. 50.

    Google Scholar 

  • Murthy, S.N.B., and Froning, H.D. (1991) “Combining Chemical and Electric-Nuclear Propulsion for High Speed Flight”, in: Proceedings of the Xth International Symposium on Airbreathing Engines (ISABE), Nottingham, UK, September 1–6, edited by F.S. Billig, American Institute of Aeronautics and Astronautics, Reston, VA, Vol. 2, pp. 1319–1326.

    Google Scholar 

  • Nakashima, H. Kajimura, Y., Kozaki, Y. and Zacharov, Yu.P. (2005) “A Laser Fusion Rocket Based on Fast Ignition Concept”, Paper IAC-05-C3.5-C4.7.07, preented at the 56th International Astronautical Congress (IAC), 16–21 October 2005, Fukuoka, Japan.

    Google Scholar 

  • Nance, J.C. (Project Manager) (1964) “Nuclear Pulse Propulsion (Project Orion) Technical Summary Report” (four volumes), General Atomic Report GA-4805, San Diego, CA. Vol 1, the Technical Summary is General Atomic GA-5009, released by NASA, G.eorge Marshall Flight Center, Huntsville, AL, September 19, 1964.

    Google Scholar 

  • NASA (2008) See http://newfrontiers.nasa.gov/

    Google Scholar 

  • Porco, C. (2004) “Cassini Captain’s Log: 2004.184”, The Planetary Report, Vol. XXIV, No. 5, pp. 12–18.

    Google Scholar 

  • Post, R.F. (1987) “The Magnetic Mirror Approach to Fusion”, Nuclear Fusion, Vol. 27, pp. 1579–1739.

    Google Scholar 

  • Reynolds, C.S. (2008) “Bringing Black Holes into Focus”, Nature, Vol. 455, No. 7208, September 4, pp. 39–40.

    Article  Google Scholar 

  • Romanelli, F., and Bruno, C. (2005) “Assessment of Open Magnetic Fusion for Space Propulsion”, ESA-ESTEC Final Report, ESA-ARIADNA Contract 18853/05/NL/MV, Noordwijk.

    Google Scholar 

  • Saenger, E. (1953) “The Theory of Photon Rockets”, Ingenieur Archiv, Vol. 21, pp. 213–219.

    Article  Google Scholar 

  • Saenger, E. (1956) “Die Erreichbarkeit der Fixsterne”, in Rendiconti del VII Congresso Internazionale Astronautico, Associazione Italiana Razzi (Proceedings of the VII International Astronautical Congress), Rome, pp. 97–113. Also in: Mitteilungen der Landesgruppe Nordbayern der DGRR vom 13.05.1958.

    Google Scholar 

  • Santarius, J.F. and Logan, B.G. (1998) “Generic magnetic fusion rocket”, J. Propulsion and Power, Vol. 14, No. 4, 519–524.

    Article  Google Scholar 

  • Schmidt, G.R., Gerrish, H.P., Martin, J.J., Smith, G.A., and Meyer, K.J. (1999) “Antimatter Production for Near-term Propulsion Applications”, AIAA 1999-2691, presented at the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Los Angeles, CA, June 20–23, 1999.

    Google Scholar 

  • Schneider, J. (2005) “The Extrasolar Planets Encyclopedia”, www.obspm.fr/encycl/encycl.html

    Google Scholar 

  • Schulze, N.R., and Roth, J.R. (1991) “The NASA-Lewis Program on Fusion Energy for Space Power and Propulsion, 1958–1978”, Fusion Technology, Vol. 19, No. 1, pp. 11–28.

    Google Scholar 

  • Sciama, D.W. (1971) Modern Cosmology, Cambridge University Press, London, p. 71.

    Google Scholar 

  • Shmatov, M.L. (2000) “Space Propulsion Systems Utilizing Ignition of Microexplosions by Distant Microexplosion and Some Problems Related to Ignition of Microexplosions by Microexplosions”, J. British Interplanetary Society, Vol. 53, No. 2, pp. 62–72.

    Google Scholar 

  • Shmatov, M.L. (2004) “Creation of the Directed Plasma Fluxes with Ignition of Microexplosions by and with the Use of Distant Microexplosions”, J. British Interplanetary Society, Vol. 57, No. 10, pp. 362–378.

    Google Scholar 

  • Shmatov, M.L. (2005) “The Typical Number of Antiprotons Necessary to Heat the Hot Spot in the D-T Fuel Doped with U, J. British Interplanetary Society, Vol. 58, No. 2, pp. 74–81.

    Google Scholar 

  • Shmatov, M.L. (2006) “The Expected Efficiency of Burning of the D-3He Fuel in Space Propulsion Systems”, J. British Interplanetary Society, Vol. 59, No. 1, pp. 35–38.

    Google Scholar 

  • Space News (2008) “New Horizons Ventures beyond Orbit of Saturn”, Space News, Vol. 19, No. 24, June 16, p. 8.

    Google Scholar 

  • Spencer, J., Buie, M., Young, L., Guo, Y., and Stern, A. (2003) “Finding Flyby Targets for New Horizons”, Earth, Moon, and Planets, Vol. 92, Nos. 1–4, pp. 483–491.

    Article  Google Scholar 

  • STAIF: the Institute for Space and Nuclear Power Studies, MSC01-1120, University of New Mexico, Albuquerque, NM 87131-0001, holds a Space Technology and Applications International Forum (STAIF) every year. The American Institute of Physics prints its proceedings (see the AIP website). Many papers deal with nuclear propulsion, including advanced fission and fusion.

    Google Scholar 

  • Takahashi, H., and Yu, A. (1998) “Muon-Catalyzed Fusion for Space Propulsion, and a Compressed Target for Producing and Collecting Anti-Protons”, in Proc. STAIF 1998, AIP publication CP-420, American Institute of Physics, Melville, NY, pp. 1359–1364.

    Google Scholar 

  • Than, M. (2008), “Large ‘Planet X’ May Lurk Beyond Pluto”, SPACE.com, June 18, 2008. Available at http://www.Space.com/scienceastronomy/080618-planet-x.html

    Google Scholar 

  • The Planetary Report (2004) Vol. XXIV, No. 6, p. 5.

    Google Scholar 

  • Trumbull, C.P. (ed.) (2000) 2000 Britannica Book of the Year, Encyclopedia Britannica, Chicago, p. 824.

    Google Scholar 

  • Vchivkov, K.V., Nakashima, H., Zacharov, Y.P., Esaki, T. Kawano, T., and Muranaka, T. (2003) “Laser-produced Plasma Experiments and Particles in Cell Simulation to Study Thrust Conversion Processes in Laser Fusion Rocket’, Japan J. Applied Physics, Vol. 42, Part 1, No. 10, pp. 6590–6597.

    Article  Google Scholar 

  • Wambsganns, J. (2001) “Gravity’s Kaleidoscope’, Scientific American, Vol. 284, No. 11, pp. 52–59.

    Google Scholar 

  • Williams, C.H. (2004) “Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems’, Paper AIAA 2004-3534, presented at the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, July 11–14, 2004, Fort Lauderdale, FL. Also published as: “Special Project Report — Recommended Designed Practices for Conceptual Nuclear Fusion Space Propulsion Systems’, Special Publication SP-108-2004, AIAA, Reston, VA.

    Google Scholar 

  • Winterberg, F. (1969) “Can a Laser Beam Ignite a Hydrogen Bomb?” in: Physics of High Energy Density: Proc. Int. School of Physics Enrico Fermi, June 14–26, 1969, Academic Press, NY, pp. 395–397.

    Google Scholar 

  • Winterberg, F. (1971) “Rocket Propulsion by Thermonuclear Micro-Bombs Ignited with Intense Relativistic Electron Beams”, Raumfahrtforschung, Vol. 15, No. 5, pp. 208–217.

    Google Scholar 

  • Wittenberg, L.J., Santarius, J.F., and Kulcinski, G.L. (1986) “Lunar Source of He3 for Commercial Fusion Power’, Fusion Technology, Vol. 10, p. 167.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Praxis Publishing Ltd, Chichester, UK

About this chapter

Cite this chapter

(2009). Stellar and interstellar precursor missions. In: Future Spacecraft Propulsion Systems. Springer Praxis Books. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88814-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88814-7_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88813-0

  • Online ISBN: 978-3-540-88814-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics