Skip to main content

On Parallel Stochastic Simulation of Diffusive Systems

  • Conference paper
Computational Methods in Systems Biology (CMSB 2008)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 5307))

Included in the following conference series:

Abstract

The parallel simulation of biochemical reactions is a very interesting problem: biochemical systems are inherently parallel, yet the majority of the algorithms to simulate them, including the well-known and widespread Gillespie SSA, are strictly sequential. Here we investigate, in a general way, how to characterize the simulation of biochemical systems in terms of Discrete Event Simulation. We dissect their inherent parallelism in order both to exploit the work done in this area and to speed-up their simulation. We study the peculiar characteristics of discrete biological simulations in order to select the parallelization technique which provides the greater benefits, as well as to touch its limits. We then focus on reaction-diffusion systems: we design and implement an efficient parallel algorithm for simulating such systems that include both reactions between entities and movements throughout the space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fujimoto, R.M.: Parallel discrete event simulation. Comm. ACM 33(10), 30–53 (1990)

    Article  Google Scholar 

  2. Ewing, G.C., McNickle, D., Pawlikowski, L.: Multiple replications in parallel: Distributed generation of data for speeding up quantitative stochastic simulation. In: Proceedings of the 15th Congress of Int. Association for Matemathics and Computer in Simulation, pp. 397–402 (1997)

    Google Scholar 

  3. Glynn, P.W., Heidelberger, P.: Analysis of initial transient deletion for parallel steady-state simulations. SIAM J. Scientific Stat. Computing 13(4), 904–922 (1992)

    Article  Google Scholar 

  4. Newman, M.E.J., Barkema, G.T.: Monte Carlo Methods in Statistical Physics. Oxford University Press, Oxford (2000)

    Google Scholar 

  5. Glynn, P.W., Heidelberger, P.: Analysis of parallel replicated simulations under a completion time constraint. ACM TOMACS 1(1), 3–23 (1991)

    Article  Google Scholar 

  6. Glynn, P.W., Heidelberger, P.: Experiments with initial transient deletion for parallel, replicated steady-state simulations. Management Science 38(3), 400–418 (1992)

    Article  Google Scholar 

  7. Lin, Y.B.: Parallel independent replicated simulation on a network of workstations. ACM SIGSIM Simulation Digest 24(1), 73–80 (1994)

    Article  Google Scholar 

  8. Yau, V.: Automating parallel simulation using parallel time streams. ACM TOMACS 9(2), 171–201 (1999)

    Article  Google Scholar 

  9. Hybinette, M., Fujimoto, R.M.: Cloning parallel simulations. ACM TOMACS 11(4), 378–407 (2001)

    Article  Google Scholar 

  10. Bononi, L., Bracuto, M., D’Angelo, G., Donatiello, L.: Concurrent replication of parallel and distributed simulation. In: Proceedings of the 19th ACM/IEEE/SCS PADS Workshop, pp. 430–436 (2005)

    Google Scholar 

  11. Streltsov, S., Vakili, P.: Parallel replicated simulation of markov chains: implementation and variance reduction. In: Proceedings of the 25th conference on Winter simulation, pp. 430–436 (1993)

    Google Scholar 

  12. Tian, T., Burrage, K.: Parallel implementation of stochastic simulation for large-scale cellular processes. In: Proceedings of of Eighth International Conference on High-Performance Computing in Asia-Pacific Region, pp. 621–626 (2005)

    Google Scholar 

  13. Burrage, K., Burrage, P.M., Hamilton, N., Tian, T.: Computer-intensive simulations for cellular models. In: Parallel Computing in Bioinformatics and Computational Biology, pp. 79–119 (2006)

    Google Scholar 

  14. Schwehm, M.: Parallel stochastic simulation of whole-cell models. In: Proceedings of ICSB, pp. 333–341 (2001)

    Google Scholar 

  15. Mazza, T., Guido, R.: Guidelines for parallel simulation of biological reactive systems. In: Proceedings of NETTAB 2008, Bioinformatics Methods for Biomedical Complex System Applications, pp. 83–85 (2008)

    Google Scholar 

  16. Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Phys. Chem. 22, 403–434 (1976)

    CAS  Google Scholar 

  17. Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  CAS  Google Scholar 

  18. McCammon, J.A., Harvey, S.C.: Dynamics of Proteins and Nucleic Acids. Cambridge University Press, Cambridge

    Google Scholar 

  19. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Phys. Biol. (1), 137–151 (2004)

    Google Scholar 

  20. Bernstein, D.: Exact stochastic simulation of coupled chemical reactions. PHYSICAL REVIEW E 71 (April 2005)

    Google Scholar 

  21. Elf, J., Ehrenberg, M.: Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. Syst. Biol. 1(2) (December 2004)

    Google Scholar 

  22. Gibson, M., Bruck, J.: Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. 104, 1876–1889 (2000)

    Article  CAS  Google Scholar 

  23. Ferscha, A.: Parallel and Distributed Simulation of Discrete Event Systems. McGraw-Hill, New York (1996)

    Google Scholar 

  24. Chandy, K.M., Misra, J.: Distributed simulation: A case study in design and verification of distributed programs. Comm. ACM 24(11), 198–206 (1981)

    Article  Google Scholar 

  25. Chandy, K.M., Misra, J.: Asynchronous distributed simulation via a sequence of parallel computations. IEEE Trans. on Software Engineering SE-5(5), 440–452 (1979)

    Article  Google Scholar 

  26. Jefferson, D.R.: Virtual time. ACM Transactions on Programming Languages and Computer Systems 7(3), 404–425 (1985)

    Article  Google Scholar 

  27. Holt, R.C.: Some deadlock properties of computer systems. ACM Computing Surveys 4(3), 179–196 (1972)

    Article  Google Scholar 

  28. Cai, W., Turner, S.J.: An algorithm for distributed discrete-event simulation - the ’carrier null message’ approach. In: Proceedings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 3–8 (1990)

    Google Scholar 

  29. Wood, K.R., Turner, S.J.: A generalized carrier-null method for conservative parallel simulation. In: Proceedings of the 8th PADS Workshop, pp. 50–57 (1994)

    Google Scholar 

  30. Bain, W.L., Scott, D.S.: An algorithm for time synchronization in distributed discret event simulation. In: Proceedings of the SCS Multiconference on Distributed Simulation, vol. 19, pp. 30–33 (1988)

    Google Scholar 

  31. Groselj, B., Tropper, C.: The time-of-next-event algorithm. In: Proceedings of the SCS Multiconference on Distributed Simulation, vol. 19, pp. 25–29 (1988)

    Google Scholar 

  32. Cota, B.A., Sargent, R.G.: A framework for automatic lookahead computation in conservative distributed simulations. In: Proceedings of the SCS Multiconference on Distributed Simulation, vol. 22, pp. 56–59 (1990)

    Google Scholar 

  33. Prakash, A., Ramamoorthy, C.V.: Hierarchical distributed simulations. In: Proceedings of the 8th International Conference on Distributed Computing Systems, pp. 341–348 (1988)

    Google Scholar 

  34. Rukoz, M.: Hierarchical deadlock detection for nested transactions. Distributed Computing 4, 123–129 (1991)

    Article  Google Scholar 

  35. Jeschke, M., Ewald, R., Park, A., Fujimoto, R., Uhrmacher, A.: Parallel and distributed spatial simulation of chemical reactions. In: Proceedings of the 22nd ACM/IEEE/SCS PADS Workshop (2008)

    Google Scholar 

  36. Nicol, D.M.: Parallel discrete-event simulation of fcfs stochastic queueing networks. SIGPLAN Not. 23(9), 124–137 (1988)

    Article  Google Scholar 

  37. Loper, M.L., Fujimoto, R.M.: Pre-sampling as an approach for exploiting temporal uncertainty. In: PADS 2000, pp. 157–164 (2000)

    Google Scholar 

  38. Ridwan, A., Krishnan, A., Dhar, P.: A parallel implementation of gillespie’s direct method. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3037, pp. 284–291. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  39. Schinazi, R.B.: Predator-prey and host-parasite spatial stochastic models. The Annals of Applied Probability 7(1), 1–9 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dematté, L., Mazza, T. (2008). On Parallel Stochastic Simulation of Diffusive Systems. In: Heiner, M., Uhrmacher, A.M. (eds) Computational Methods in Systems Biology. CMSB 2008. Lecture Notes in Computer Science(), vol 5307. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88562-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88562-7_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88561-0

  • Online ISBN: 978-3-540-88562-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics