Skip to main content

Statics of a Geometrically Nonlinear Elastic Body

  • Chapter
  • First Online:
Variational Principles of Continuum Mechanics

Part of the book series: Interaction of Mechanics and Mathematics ((IMM))

  • 3049 Accesses

Abstract

In the geometrically nonlinear case, displacements and their gradients are not small. The major new feature which that brings into the theory is non-convexity of the energy functional.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.M. Ball. Constitutive inequalities and existence theorems in nonlinear elastostatics. In R.J. Knops, editor. Nonlinear analysis and mechanics, Heriot Watt Sympoisum, pp. 187–241. Pitman, London, 1977.

    Google Scholar 

  2. V.L. Berdichevsky. Variational-asymptotic method of constructing the nonlinear shell theory. In G.K. Mikhailov W.T. Koiter, editor. Proceedings of IUTAM Symposium on Shell Theory, Tbilisi, pp. 137–161. North Holland Company, Amsterdam, 1979.

    Google Scholar 

  3. V.L. Berdichevsky. Variational principles of continuum mechanics. Nauka, Moscow, 1983.

    Google Scholar 

  4. V.L. Berdichevsky and V. Misyura. On a dual variational principle in geometrically nonlinear elasticity theory. Journal of Applied Mathematics and Mechanics (PMM), 43(2):343–351, 1979.

    Article  Google Scholar 

  5. J. Christoffersen. On Zubov principle of stationary complementary energy in the non-linear theory of elasticity. DCAMM Report, 44:31, 1973.

    Google Scholar 

  6. S. Dost and B. Tabarrok. Application of Hamilton principle to large deformation and flow problems. Transactions on ASME, Journal of Applied Mechanics, 2(2):285–290, 1979.

    MathSciNet  Google Scholar 

  7. J.D. Eshelby. Energy relations and the energy-momentum tensor in continuum mechanics. In M.F. Kanninen, W.F. Adler, A.R. Rosenfield, and R.I. Jaffee, editors. Inelastic behaviour of solids, pp. 77–115. McGraw-Hill, New York, 1970.

    Google Scholar 

  8. B. A. Fraijs de Vebeke. New variational principle for finite elastic displacements. International Journal of Engineering Science, 10:745–763, 1972.

    Article  MathSciNet  Google Scholar 

  9. M.A. Grinfeld. On thermodynamic stability of materials. Doklady Academii Nauk SSSR, 253(6):1349–1353, 1980.

    MathSciNet  Google Scholar 

  10. M.A. Grinfeld. On the two types of heterogeneous phase-equilibria. Doklady Akademii Nauk SSSR, 258(3):54–57, 1981.

    MathSciNet  Google Scholar 

  11. W.T. Koiter and J.G. Simmonds. Foundation of shell theory. In Theoretical and applied mechanics, Proceedings of the 13th international congress on theoretical and applied mechanics (Moscow, 1972), Springer, Berlin, 1973.

    Google Scholar 

  12. M Levinson. The complementary energy theorem in finite elasticity. Journal of Applied Mechanics, 32:826–828, 1965.

    MathSciNet  Google Scholar 

  13. A.I. Lurie. Theory of elasticity. Springer-Verlag, Berlin, 2005.

    Google Scholar 

  14. E.F. Masur and C.H. Popelar. On the use of the complementary energy in the solution of buckling problems. International Journal of Solids Structure, 12(3):203–216, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  15. I.G. Napolitano. On the functional analysis derivation and generalization of hybrid variational method. Meccanica, 10(3):188–193, 1975.

    Article  MATH  Google Scholar 

  16. I.G. Napolitano and C. Golia. Dual variational formulation of non-linear problem in fluid dynamics. In. 23 Congr. naz. assoc. ital. mecc. teor: ed appl. (Cagliari, 1976), sez. 43, Bologna, 1976.

    Google Scholar 

  17. S. Nemat-Nasser. General variational methods for elastic waves in composites. Journal of Elasticity, (2):73–90, 1972.

    Google Scholar 

  18. S. Nemat-Nasser. A note on complementary energy and Reissner principle in non-linear elasticity. Iranian Journal of Science and Technology, 6:95–101, 1977.

    MathSciNet  Google Scholar 

  19. R.W. Ogden. A note on variational theorems in non-linear elastostatics. Mathematical Proceedings of the Cambridge Philosophical Society, 77:609–615, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  20. C. Oran. Complementary energy method for buckling. Journal of Engineering Mechanics Division, ASCE, 93(EMI):57–75, 1967.

    Google Scholar 

  21. H. Stumpf. Dual extremum principle and error bounds in the theory of plates with large deflection. Archives of Mechanics and Stosowone, 27(3):17–21, 1975.

    MathSciNet  Google Scholar 

  22. H. Stumpf. Generating functionals and extremum principles in nonlinear elasticity with applications to nonlinear plate and shallow shell theory. In. Lecture notes in mathematics, volume 503, pp. 500–510. Springer-Verlag, Berlin, 1976.

    Google Scholar 

  23. H. Stumpf. The principle of complementary energy in nonlinear plate theory. Journal of Elasticity, 6:95–104, 1976.

    Article  MATH  Google Scholar 

  24. L.M. Truskinovsky. Equilibrium phase interphases. Soviet Physics – Doklady, 27(7):551–553, 1982.

    Google Scholar 

  25. K. Washizu. Variational methods in elasticity and plasticity. Pergamon Press, Oxford, 1968.

    MATH  Google Scholar 

  26. K. Washizu. A note on the principle of stationary complementary energy in nonlinear elasticity. Mechanics Today, 5:509–522, 1980.

    MathSciNet  Google Scholar 

  27. G. Wempner. Complementary theorems of solid mechanics. pp. 127–135. In [229], 1980.

    Google Scholar 

  28. L.M. Zubov. The stationary principle of complementary work in nonlinear theory of elasticity. Journal of Applied Mathematics and Mechanics (PMM), 34(2):228–232, 1970.

    Article  MATH  MathSciNet  Google Scholar 

  29. L.M. Zubov. Variational principles of nonlinear theory of elasticity. Journal of Applied Mathematics and Mechanics (PMM), 35(3):369–372, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  30. L.M. Zubov. Variational principles of nonlinear elasticity theory, the case of composition small and finite deformations. Journal of Applied Mathematics and Mechanics (PMM), 35(5):802–806, 1971.

    Article  MATH  Google Scholar 

  31. L.M. Zubov. The representation of the displacement gradient of isotropic elastic body in terms of the Piola stress tensor. Journal of Applied Mathematics and Mechanics (PMM), 40(6):1012–1019, 1976.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V.L. Berdichevsky .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Berdichevsky, V. (2009). Statics of a Geometrically Nonlinear Elastic Body. In: Variational Principles of Continuum Mechanics. Interaction of Mechanics and Mathematics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88467-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-88467-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-88466-8

  • Online ISBN: 978-3-540-88467-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics