Skip to main content

Braneworld Black Holes

  • Chapter
Physics of Black Holes

Part of the book series: Lecture Notes in Physics ((LNP,volume 769))

Abstract

In this article, I give an introduction to and overview of braneworlds and black holes in the context of warped compactifications. I first describe the general paradigm of braneworlds and introduce the Randall–Sundrum model. I discuss braneworld gravity, both using perturbation theory and also nonperturbative results. I then discuss black holes on the brane, the obstructions to finding exact solutions, and ways of tackling these difficulties. I describe some known solutions and conclude with some open questions and controversies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 139 (1983).

    ADS  Google Scholar 

  2. V. A. Rubakov and M. E. Shaposhnikov, Phys. Lett. B 125, 136 (1983).

    ADS  Google Scholar 

  3. Akama, K.: Lect. Notes Phys. 176, 267 (1982) [arXiv:hep-th/0001113].

    ADS  Google Scholar 

  4. J. Dai, R. G. Leigh and J. Polchinski, Mod. Phys. Lett. A 4, 2073 (1989).

    ADS  MathSciNet  Google Scholar 

  5. J. Polchinski, Phys. Rev. Lett. 75, 4724 (1995) [arXiv:hep-th/9510017].

    MATH  ADS  MathSciNet  Google Scholar 

  6. P. Horava and E. Witten, Nucl. Phys. B 475, 94 (1996) [arXiv:hep-th/9603142].

    MATH  ADS  MathSciNet  Google Scholar 

  7. A. Lukas, B. A. Ovrut, K. S. Stelle and D. Waldram, Phys. Rev. D 59, 086001 (1999) [arXiv:hep-th/9803235].

    ADS  MathSciNet  Google Scholar 

  8. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998) [hep-ph/9803315].

    ADS  Google Scholar 

  9. N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D 59, 086004 (1999) [hep-ph/9807344].

    Google Scholar 

  10. I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998) [hep-ph/9804398].

    Google Scholar 

  11. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999) [arXiv:hep-ph/9905221].

    MATH  ADS  MathSciNet  Google Scholar 

  12. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999) [arXiv:hep-th/9906064].

    MATH  ADS  MathSciNet  Google Scholar 

  13. J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998).

    MATH  ADS  MathSciNet  Google Scholar 

  14. J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [arXiv:hep-th/9711200].

    MATH  MathSciNet  Google Scholar 

  15. G. W. Gibbons and D. L. Wiltshire, Ann. Phys. 167, 201 (1986).

    ADS  MathSciNet  Google Scholar 

  16. G. W. Gibbons and D. L. Wiltshire, Ann. Phys. 176, 393 (1987) (Erratum).

    MathSciNet  Google Scholar 

  17. D. Garfinkle, G. T. Horowitz and A. Strominger, Phys. Rev. D 43, 3140 (1991).

    ADS  MathSciNet  Google Scholar 

  18. D. Garfinkle, G. T. Horowitz and A. Strominger, Phys. Rev. D 45, 3888 (1992) (Erratum).

    Google Scholar 

  19. N. I. Shakura and R. A. Sunyaev, Astron. Astrophys. 24, 337 (1973).

    ADS  Google Scholar 

  20. D. Lynden-Bell, Nature 223, 690 (1969).

    ADS  Google Scholar 

  21. J. Kormendy and D. Richstone, Ann. Rev. Astron. Astrophys. 33, 581 (1995).

    ADS  Google Scholar 

  22. R. Schodel et al., Nature 419, 694 (2002).

    ADS  Google Scholar 

  23. A. C. Fabian, K. Iwasawa, C. S. Reynolds and A. J. Young, Publ. Astron. Soc. Pac. 112, 1145 (2000) [arXiv:astro-ph/0004366].

    ADS  Google Scholar 

  24. M. Gierlinski and C. Done, Mon. Not. Roy. Astron. Soc. 347, 885 (2004) [arXiv:astro-ph/0307333].

    ADS  Google Scholar 

  25. E. G. Gimon and P. Horava, “Astrophysical violations of the Kerr bound as a possible signature of string theory,” arXiv:0706.2873 [hep-th].

    Google Scholar 

  26. S. B. Giddings and S. D. Thomas, Phys. Rev. D 65, 056010 (2002) [arXiv:hep-ph/0106219].

    Google Scholar 

  27. S. Dimopoulos and G. L. Landsberg, Phys. Rev. Lett. 87, 161602 (2001) [arXiv:hep-ph/0106295].

    ADS  Google Scholar 

  28. C. M. Harris, P. Richardson and B. R. Webber, JHEP 0308, 033 (2003) [arXiv:hep-ph/0307305].

    ADS  Google Scholar 

  29. C. M. Harris, M. J. Palmer, M. A. Parker, P. Richardson, A. Sabetfakhri and B. R. Webber, JHEP 0505, 053 (2005) [arXiv:hep-ph/0411022].

    ADS  Google Scholar 

  30. G. L. Landsberg, J. Phys. G 32, R337 (2006) [arXiv:hep-ph/0607297].

    Google Scholar 

  31. M. Cavaglia, R. Godang, L. Cremaldi and D. Summers, Comput. Phys. Commun. 177, 506 (2007) [arXiv:hep-ph/0609001].

    ADS  MATH  Google Scholar 

  32. P. Kanti, Black holes at the LHC, arXiv:0802.2218 [hep-th].

    Google Scholar 

  33. S. S. Gubser, Phys. Rev. D 63, 084017 (2001) [arXiv:hep-th/9912001].

    ADS  MathSciNet  Google Scholar 

  34. H. L. Verlinde, Nucl. Phys. B 580, 264 (2000) [arXiv:hep-th/9906182].

    MATH  ADS  MathSciNet  Google Scholar 

  35. E. P. Verlinde and H. L. Verlinde, JHEP 0005, 034 (2000) [arXiv:hep-th/9912018].

    ADS  MathSciNet  Google Scholar 

  36. M. J. Duff and J. T. Liu, Phys. Rev. Lett. 85, 2052 (2000).

    ADS  MathSciNet  Google Scholar 

  37. M. J. Duff and J. T. Liu, Class. Quant. Grav. 18, 3207 (2001) [arXiv:hep-th/0003237].

    MATH  ADS  MathSciNet  Google Scholar 

  38. S. W. Hawking, Commun. Math. Phys. 43, 199 (1975).

    MathSciNet  ADS  Google Scholar 

  39. P. Candelas, Phys. Rev. D 21, 2185 (1980).

    ADS  MathSciNet  Google Scholar 

  40. D. N. Page, Phys. Rev. D 25, 1499 (1982).

    ADS  MathSciNet  Google Scholar 

  41. A. Karch and L. Randall, JHEP 05 (2001) 008, hep-th/0011156.

    Google Scholar 

  42. W. Israel, Nuovo Cimento Soc. Ital. Phys. B 44, 4349 (1966).

    Google Scholar 

  43. D. Garfinkle and R. Gregory, Phys. Rev. D 41, 1889 (1990).

    ADS  Google Scholar 

  44. B. Carter and R. Gregory, Phys. Rev. D 51, 5839 (1995) [arXiv:hep-th/9410095].

    ADS  Google Scholar 

  45. B. Carter, Int. J. Theor. Phys. 40, 2099 (2001) [arXiv:gr-qc/0012036].

    MATH  Google Scholar 

  46. A. Chamblin and G. W. Gibbons, Phys. Rev. Lett. 84, 1090 (2000) [arXiv:hep-th/9909130].

    MATH  ADS  MathSciNet  Google Scholar 

  47. S. B. Giddings, E. Katz and L. Randall, JHEP 0003, 023 (2000) [arXiv:hep-th/0002091].

    ADS  MathSciNet  Google Scholar 

  48. C. Charmousis, R. Gregory and V. A. Rubakov, Phys. Rev. D 62, 067505 (2000) [arXiv:hep-th/9912160].

    ADS  MathSciNet  Google Scholar 

  49. C. Charmousis, R. Gregory, N. Kaloper and A. Padilla, JHEP 0610, 066 (2006) [arXiv:hep-th/0604086].

    ADS  MathSciNet  Google Scholar 

  50. J. Garriga and T. Tanaka, Phys. Rev. Lett. 84, 2778 (2000) [arXiv:hep-th/9911055].

    MATH  ADS  MathSciNet  Google Scholar 

  51. P. Bowcock, C. Charmousis and R. Gregory, Class. Quant. Grav. 17, 4745 (2000) [arXiv:hep-th/0007177].

    MATH  MathSciNet  ADS  Google Scholar 

  52. L. A. Gergely and R. Maartens, Class. Quant. Grav. 19, 213 (2002) [arXiv:gr-qc/0105058].

    MATH  ADS  MathSciNet  Google Scholar 

  53. Z. Keresztes and L. A. Gergely, On the validity of the 5-dimensional Birkhoff theorem: The tale of a counterexample, arXiv:0712.3758 [gr-qc].

    Google Scholar 

  54. R. C. Myers and M. J. Perry, Annals Phys. 172, 304 (1986).

    MATH  ADS  MathSciNet  Google Scholar 

  55. H. A. Chamblin and H. S. Reall, Nucl. Phys. B 562, 133 (1999) [arXiv:hep-th/9903225].

    MATH  ADS  MathSciNet  Google Scholar 

  56. N. Kaloper, Phys. Rev. D 60, 123506 (1999) [arXiv:hep-th/9905210].

    ADS  MathSciNet  Google Scholar 

  57. P. Kraus, JHEP 9912, 011 (1999) [arXiv:hep-th/9910149].

    MathSciNet  ADS  Google Scholar 

  58. P. Binetruy, C. Deffayet and D. Langlois, Nucl. Phys. B 565, 269 (2000) [arXiv:hep-th/9905012].

    MATH  ADS  MathSciNet  Google Scholar 

  59. C. Csaki, M. Graesser, C. F. Kolda and J. Terning, Phys. Lett. B 462, 34 (1999) [arXiv:hep-ph/9906513].

    MATH  ADS  MathSciNet  Google Scholar 

  60. J. M. Cline, C. Grojean and G. Servant, Phys. Rev. Lett. 83, 4245 (1999) [arXiv:hep-ph/9906523].

    MATH  ADS  MathSciNet  Google Scholar 

  61. P. Kanti, I. I. Kogan, K. A. Olive and M. Pospelov, Phys. Lett. B 468, 31 (1999) [arXiv:hep-ph/9909481];

    MATH  ADS  MathSciNet  Google Scholar 

  62. M. J. Duff, Phys. Rev. D 9, 1837 (1974).

    ADS  Google Scholar 

  63. R. Emparan, A. Fabbri and N. Kaloper, JHEP 0208, 043 (2002) [arXiv:hep-th/0206155].

    ADS  MathSciNet  Google Scholar 

  64. T. Tanaka, Prog. Theor. Phys. Suppl. 148, 307 (2003) [arXiv:gr-qc/0203082].

    ADS  Google Scholar 

  65. W. Kinnersley and M. Walker, Phys. Rev. D 2, 1359 (1970).

    ADS  MathSciNet  Google Scholar 

  66. D. M. Eardley, G. T. Horowitz, D. A. Kastor and J. H. Traschen, Phys. Rev. Lett. 75, 3390 (1995) [arXiv:gr-qc/9506041].

    MATH  ADS  MathSciNet  Google Scholar 

  67. R. Emparan, Phys. Rev. Lett. 75, 3386 (1995) [arXiv:gr-qc/9506025].

    MATH  ADS  MathSciNet  Google Scholar 

  68. S. W. Hawking and S. F. Ross, Phys. Rev. Lett. 75, 3382 (1995) [arXiv:gr-qc/9506020].

    MATH  ADS  MathSciNet  Google Scholar 

  69. R. Gregory and M. Hindmarsh, Phys. Rev. D 52, 5598 (1995) [arXiv:gr-qc/9506054].

    ADS  Google Scholar 

  70. R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 0001, 007 (2000) [arXiv:hep-th/9911043].

    ADS  MathSciNet  Google Scholar 

  71. R. Emparan, G. T. Horowitz and R. C. Myers, JHEP 0001, 021 (2000) [arXiv:hep-th/9912135].

    ADS  MathSciNet  Google Scholar 

  72. R. Emparan, R. Gregory and C. Santos, Phys. Rev. D 63, 104022 (2001) [arXiv:hep-th/0012100].

    ADS  MathSciNet  Google Scholar 

  73. R. Gregory, Nucl. Phys. B 467, 159 (1996) [arXiv:hep-th/9510202].

    MATH  ADS  MathSciNet  Google Scholar 

  74. R. Gregory, JHEP 0306, 041 (2003) [arXiv:hep-th/0304262].

    ADS  MathSciNet  Google Scholar 

  75. A. Chamblin, S. W. Hawking and H. S. Reall, Phys. Rev. D 61, 065007 (2000) [arXiv:hep-th/9909205].

    ADS  MathSciNet  Google Scholar 

  76. R. Gregory, Class. Quant. Grav. 17, L125 (2000) [arXiv:hep-th/0004101].

    MATH  MathSciNet  ADS  Google Scholar 

  77. R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993) [arXiv:hep-th/9301052].

    MATH  ADS  MathSciNet  Google Scholar 

  78. R. Gregory and R. Laflamme, Nucl. Phys. B 428, 399 (1994) [arXiv:hep-th/9404071].

    MATH  ADS  MathSciNet  Google Scholar 

  79. A. Fabbri and G. P. Procopio, Class. Quant. Grav. 24, 5371 (2007), 0704.3728 [hep-th].

    MATH  ADS  MathSciNet  Google Scholar 

  80. C. Charmousis and R. Gregory, Class. Quant. Grav. 21, 527 (2004) [arXiv:gr-qc/0306069].

    MATH  ADS  MathSciNet  Google Scholar 

  81. H. Kudoh, T. Tanaka and T. Nakamura, Phys. Rev. D 68, 024035 (2003) [arXiv:gr-qc/0301089].

    ADS  MathSciNet  Google Scholar 

  82. T. Shiromizu and M. Shibata, Phys. Rev. D 62, 127502 (2000) [arXiv:hep-th/0007203].

    ADS  MathSciNet  Google Scholar 

  83. A. Chamblin, H. S. Reall, H. a. Shinkai and T. Shiromizu, Phys. Rev. D 63, 064015 (2001) [arXiv:hep-th/0008177].

    ADS  MathSciNet  Google Scholar 

  84. T. Wiseman, Phys. Rev. D 65, 124007 (2002) [arXiv:hep-th/0111057].

    ADS  MathSciNet  Google Scholar 

  85. P. Kanti and K. Tamvakis, Phys. Rev. D 65, 084010 (2002) [arXiv:hep-th/0110298].

    ADS  MathSciNet  Google Scholar 

  86. P. Kanti, I. Olasagasti and K. Tamvakis, Phys. Rev. D 68, 124001 (2003) [arXiv:hep-th/0307201].

    ADS  MathSciNet  Google Scholar 

  87. R. Casadio and L. Mazzacurati, Mod. Phys. Lett. A 18, 651 (2003) [arXiv:gr-qc/0205129].

    ADS  MathSciNet  Google Scholar 

  88. N. Tanahashi and T. Tanaka, JHEP 0803, 041 (2008) [arXiv:0712.3799 [gr-qc]].

    ADS  MathSciNet  Google Scholar 

  89. T. Shiromizu, K. i. Maeda and M. Sasaki, Phys. Rev. D 62, 024012 (2000) [arXiv:gr-qc/9910076].

    ADS  MathSciNet  Google Scholar 

  90. R. Maartens, Phys. Rev. D 62, 084023 (2000) [arXiv:hep-th/0004166].

    ADS  MathSciNet  Google Scholar 

  91. C. Germani and R. Maartens, Phys. Rev. D 64, 124010 (2001) [arXiv:hep-th/0107011].

    ADS  MathSciNet  Google Scholar 

  92. M. Bruni, C. Germani and R. Maartens, Phys. Rev. Lett. 87, 231302 (2001) [arXiv:gr-qc/0108013].

    ADS  MathSciNet  Google Scholar 

  93. N. Dadhich, R. Maartens, P. Papadopoulos and V. Rezania, Phys. Lett. B 487, 1 (2000) [arXiv:hep-th/0003061].

    MATH  ADS  MathSciNet  Google Scholar 

  94. R. Casadio, A. Fabbri and L. Mazzacurati, Phys. Rev. D 65, 084040 (2002) [arXiv:gr-qc/0111072].

    ADS  MathSciNet  Google Scholar 

  95. M. Visser and D. L. Wiltshire, Phys. Rev. D 67, 104004 (2003) [arXiv:hep-th/0212333].

    ADS  MathSciNet  Google Scholar 

  96. K. A. Bronnikov, V. N. Melnikov and H. Dehnen, Phys. Rev. D 68, 024025 (2003) [arXiv:gr-qc/0304068].

    ADS  MathSciNet  Google Scholar 

  97. T. Harko and M. K. Mak, Phys. Rev. D 69, 064020 (2004) [arXiv:gr-qc/0401049].

    ADS  MathSciNet  Google Scholar 

  98. R. Gregory, R. Whisker, K. Beckwith and C. Done, JCAP 0410, 013 (2004) [arXiv:hep-th/0406252].

    ADS  MathSciNet  Google Scholar 

  99. K. A. Bronnikov and S. W. Kim, Phys. Rev. D 67, 064027 (2003) [arXiv:gr-qc/0212112].

    ADS  MathSciNet  Google Scholar 

  100. D. Karasik, C. Sahabandu, P. Suranyi and L. C. R. Wijewardhana, Phys. Rev. D 70, 064007 (2004) [arXiv:gr-qc/0404015].

    ADS  MathSciNet  Google Scholar 

  101. V. P. Frolov, M. Snajdr and D. Stojkovic, Phys. Rev. D 68, 044002 (2003) [arXiv:gr-qc/0304083].

    ADS  MathSciNet  Google Scholar 

  102. D. Stojkovic, JHEP 0409, 061 (2004) [arXiv:gr-qc/0409038].

    ADS  MathSciNet  Google Scholar 

  103. A. Flachi and T. Tanaka, Phys. Rev. Lett. 95, 161302 (2005) [arXiv:hep-th/0506145].

    ADS  MathSciNet  Google Scholar 

  104. A. Flachi, O. Pujolas, M. Sasaki and T. Tanaka, arXiv:hep-th/0601174.

    Google Scholar 

  105. V. P. Frolov and D. Stojkovic, Phys. Rev. Lett. 89, 151302 (2002) [arXiv:hep-th/0208102].

    ADS  Google Scholar 

  106. R. Gregory, V. A. Rubakov and S. M. Sibiryakov, Class. Quant. Grav. 17, 4437 (2000) [arXiv:hep-th/0003109].

    MATH  MathSciNet  ADS  Google Scholar 

  107. S. Creek, R. Gregory, P. Kanti and B. Mistry, Class. Quant. Grav. 23, 6633 (2006) [arXiv:hep-th/0606006].

    MATH  ADS  MathSciNet  Google Scholar 

  108. S. S. Seahra, Phys. Rev. D 71, 084020 (2005) [arXiv:gr-qc/0501018].

    ADS  MathSciNet  Google Scholar 

  109. C. Galfard, C. Germani and A. Ishibashi, arXiv:hep-th/0512001.

    Google Scholar 

  110. S. Lonsdale and I. Moss, Nucl. Phys. B 298, 693 (1988).

    ADS  Google Scholar 

  111. A. Achucarro, R. Gregory and K. Kuijken, Phys. Rev. D 52, 5729 (1995) [arXiv:gr-qc/9505039].

    ADS  Google Scholar 

  112. F. Bonjour, R. Emparan and R. Gregory, Phys. Rev. D 59, 084022 (1999) [arXiv:gr-qc/9810061].

    ADS  MathSciNet  Google Scholar 

  113. D. Stojkovic, Phys. Rev. Lett. 94, 011603 (2005) [arXiv:hep-ph/0409124].

    ADS  MathSciNet  Google Scholar 

  114. A. L. Fitzpatrick, L. Randall, and T. Wiseman, JHEP 11 (2006) 033, hep-th/0608208.

    ADS  MathSciNet  Google Scholar 

  115. A. Karch and L. Randall, JHEP 0106, 063 (2001) [arXiv:hep-th/0105132].

    ADS  MathSciNet  Google Scholar 

  116. O. DeWolfe, D. Z. Freedman and H. Ooguri, Phys. Rev. D 66, 025009 (2002) [arXiv:hep-th/0111135].

    ADS  MathSciNet  Google Scholar 

  117. S. W. Hawking and D. N. Page, Commun. Math. Phys. 87, 577 (1983).

    ADS  MathSciNet  Google Scholar 

  118. T. Hirayama and G. Kang, Phys. Rev. D 64 (2001) 064010, hep-th/0104213.

    ADS  MathSciNet  Google Scholar 

  119. A. Chamblin and A. Karch, Phys. Rev. D 72, 066011 (2005) arXiv:hep-th/0412017.

    ADS  MathSciNet  Google Scholar 

  120. R. Gregory, S. F. Ross and R. Zegers, arXiv:0802.2037 [hep-th].

    Google Scholar 

  121. U. Gen and M. Sasaki, Prog. Theor. Phys. 105, 591 (2001) [arXiv:gr-qc/0011078].

    MATH  Google Scholar 

  122. R. Gregory and A. Padilla, Phys. Rev. D 65, 084013 (2002) [arXiv:hep-th/0104262].

    ADS  MathSciNet  Google Scholar 

  123. A. Padilla, Phys. Lett. B 528, 274 (2002) [arXiv:hep-th/0111247].

    MATH  ADS  MathSciNet  Google Scholar 

  124. S. de Haro, S. N. Solodukhin and K. Skenderis, Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230].

    MATH  ADS  Google Scholar 

  125. A. Fabbri and G. P. Procopio, The holographic interpretation of hawking radiation, arXiv:0705.3363 [gr-qc].

    Google Scholar 

  126. T. Tanaka, Implication of classical black hole evaporation conjecture to floating black holes, arXiv:0709.3674 [gr-qc].

    Google Scholar 

  127. L. Grisa and O. Pujolas, Dressed domain Walls and holography, arXiv:0712.2786 [hep-th].

    Google Scholar 

  128. A. Flachi and T. Tanaka, Vacuum polarization in asymptotically anti-de Sitter black hole geometries, arXiv:0803.3125 [hep-th].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gregory, R. (2009). Braneworld Black Holes. In: Papantonopoulos, E. (eds) Physics of Black Holes. Lecture Notes in Physics, vol 769. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88460-6_7

Download citation

Publish with us

Policies and ethics