Skip to main content

Geophysical characterisation of aquifers

  • Chapter
Groundwater Geophysics

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beard DC, Weyl PK (1973) Influence of texture on porosity and permeability of unconsolidated sand. American Association of Petroleum Geologists Bulletin 34:943-961

    Google Scholar 

  • Berg R (1970) Method for determining permeability from reservoir rock properties. Transactions, Gulf Coast Association of Geological Societies 20:303-317

    Google Scholar 

  • Biella G, Lozej A, Tabacco I (1983) Experimental study of some hydrogeophysical properties of unconsolidated porous media. Ground Water 21:741-751

    Article  Google Scholar 

  • Börner FD, Schopper JR, Weller A (1996) Evaluation of transport and storage properties in the soil and groundwater zone from induced polarization measurements. Geophys. Prosp. 44: 583-601

    Article  Google Scholar 

  • Buttler JJ (2005) Hydrogeological methods for estimation of spatial variations in hydraulic conductivity. In: Rubin Y, Hubbard S (eds) Hydrogeophysics, Springer, Dordrecht, pp 23-58

    Chapter  Google Scholar 

  • Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150-166

    Google Scholar 

  • Döring U (1997) Transport der reaktiven Stoffe Eosin, Uranin und Lithium in einem heterogenen Grundwasserleiter. Berichte des Forschungszentrums Jülich 3354. Forschungszentrum Jülich

    Google Scholar 

  • Fechner T (1998) Seismische Tomographie zur Beschreibung heterogener Grundwasserleiter. Tübinger Geowissenschaftliche Arbeiten, C40

    Google Scholar 

  • Frohlich RK, Kelly WE (1985) The relation between hydraulic transmissivity and transverse resistance in a complicated aquifer of glacial outwash deposits. Journal of Hydrology 79:215-229

    Article  Google Scholar 

  • Gassmann F (1950) Ãœber die Elastizität poröser Medien. Vierteljahreszeitschrift der Schweizer naturforschenden Gesellschaft, 1

    Google Scholar 

  • Georgi DT, Menger SK (1994) Reservoir quality, porosity and permeability relationships. Proc. 14th Mintrop Seminar, Münster

    Google Scholar 

  • Heigold PC, Gilkeson RH, Cartwrigt K, Reed PC (1979) Aquifer transmissivity from surfial electrical methods. Ground Water 17:338-345

    Article  Google Scholar 

  • Hölting B (1996) Hydrogeologie. Enke, Stuttgart

    Google Scholar 

  • Hördt A, Blaschek R, Kemna A, Suckut J, Zisser N (2005) Hydraulic conductivity from spectral induced polarisation measurements – a case history, 18th Annual Meeting Symposium on the Application of Geophysics in Engineering and Environmental Problems (SAGEEP)

    Google Scholar 

  • Huntley D (1986) Relations between permeability and electrical resistivity in granular aquifers. Ground Water 24:466-474

    Article  Google Scholar 

  • Kemna A (2000) Tomographic Inversion of Complex Resistivity. PhD thesis, Universität Bochum

    Google Scholar 

  • Kemna A, Binley A, Slater L. (2004) Crosshole IP imaging for engineering and environmental applications. Geophysics 69:97-107

    Article  Google Scholar 

  • Kenyon WE (1997) Petrophysical principles of application of NMR logging. The Log Analyst March-April: 21-43

    Google Scholar 

  • Klimentos T (1991) The effects of porosity-permeability-clay content on the velocity of compressional waves. Geophysics 56:1930-1939

    Article  Google Scholar 

  • Kozeny JA (1928) Die Durchlässigkeit des Bodens. Der Kulturtechniker 35:478- 486

    Google Scholar 

  • Legtchenko AV, Baltassat JM, Beauce A, Bernard J (2002) Nuclear Magnetic Resonance as a geophysical tool for hydrogeologists. Journal of Applied Geophysics 50:21-46

    Article  Google Scholar 

  • Leibundgut C, De Carvalho Dill A, Maloszewki P, Müller I, Schneider J. (1992) Investigation of solute transport in the porous aquifer of the test site Wilerwald (Switzerland). Steir Beitr z Hydrogeologie 43:229-250

    Google Scholar 

  • Lesmes DP, Friedman SP (2005) Relationships between the electrical and hydrogeological properties of rocks and soils. In: Rubin Y, Hubbard S (eds) Hydrogeophysics, Springer, Dordrecht, pp 87-128

    Chapter  Google Scholar 

  • Lubczynski M, Roy J. (2005) MRS contribution to hydrogeological system parameterization. Near Surface Geophysics 3:131-139

    Google Scholar 

  • Marotz G (1968) Technische Grundlagen einer Wasserspeicherung im natürlichen Untergrund. Verlag Wasser und Boden, Hamburg

    Google Scholar 

  • Mattheβ K, Ubell G (1981) Allgemeine Hydrogeologie – Grundwasserhaushalt. Borntraeger, Berlin, Stuttgart

    Google Scholar 

  • Mazác O, Císlerová M, Kelly WE, Landa I, Venhodová D (1990) Determination of hydraulic conductivities by surface geoelectrical methods. In: S.H. Ward, (ed.): Geotechnical and Environmental Geophysics, Vol. II:125 - 131, Soc. Expl.Geophys., Tulsa, Ok, USA

    Google Scholar 

  • Mazác O, Kelly WE, Landa I (1985) A hydrogeophysical model for relations between electrical and hydraulic properties of aquifers. Journal of Hydrology 79:1-19

    Article  Google Scholar 

  • Nelson PH (1994) Permeability-porosity relationships in sedimentary rocks. The log analyst:38-62

    Google Scholar 

  • Pape H (2003) Fractal relation between porosity and permeability: theory and verification. In: Clauser C (ed) Numerical simulation of reactive flow in hot aquifers. Springer, Heidelberg

    Google Scholar 

  • Pape H, Clauser C, Iffland J (1998) Permeability prediction based on fractal porespace geometry. Geophysics 64:1447-1460

    Article  Google Scholar 

  • Pekdeger A, Schulz HD (1975) Ein Methodenvergleich zur Laborbestimmung des kf-Wertes von Sanden. Mayniana, 27:35-40

    Google Scholar 

  • Portniaguine O, Zhdanov MS (1999) Focusing geophysical inversion images. Geophysics 64:874-887

    Article  Google Scholar 

  • Radic T (2004) Elimination of Cable effects while Multichannel SIP measurements. 10th European meeting of Env. Eng. Geophys., Utrecht

    Google Scholar 

  • Schirov M, Legtchenko A, Creer G (1991) A new direct non-invasive groundwater detection technology for Australia. Exploration Geophysics 22:333-338

    Article  Google Scholar 

  • Seiler K-P (1979) Durchlässigkeit und Porosität von Lockergesteinen in Oberbayern. Mitteilung zur Ing.- u. Hydrogeologie 9:105-126

    Google Scholar 

  • Terzaghi K (1925) Erdbaumechanik auf bodenphysikalischer Grundlage. Leipzig, Wien 17 Geophysical characterisation of aquifers

    Google Scholar 

  • Timur A (1968) An investigation of permeability, porosity, and residual water saturation relationships for sandstone reservoirs. The Log Analyst:8-17

    Google Scholar 

  • Urish DW (1981) Electrical resistivity-hydraulic conductivity relationships in glacial outwash aquifers. Water Resources Research 17:1401-1408

    Article  Google Scholar 

  • Vereecken H, Döring U, Hardelauf H, Jaekel U, Hashagen U, Neuendorf O, Schwarze H, Seidemann R (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. Journal of Contaminant Hydrology 45:329-358

    Article  Google Scholar 

  • Worthington PF (1975) Quantitative geophysical investigations of granular aquifers. Geophys. Surv.:313-366

    Google Scholar 

  • Yaramanci U, Lange G, Hertrich M (2002) Aquifer characterisation using Surface NMR jointly with other geophysical techniques at the Nauen/Berlin test site. Journal of Applied Geophysics 50:47-65

    Article  Google Scholar 

  • Yaramanci U, Lange G, Knödel K (1999) Surface NMR within a geophysical study of an aquifer at Haldensleben (Germany). Geophysical Prospecting 47:923-943

    Article  Google Scholar 

  • Yi M-J, Kim J-H, Chung S-H (2003) Enhancing the resolving power of leastsquares inversion with active constraint balancing. Geophysics 68:931-941

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirsch, R., Yaramanci, U. (2009). Geophysical characterisation of aquifers. In: Kirsch, R. (eds) Groundwater Geophysics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88405-7_17

Download citation

Publish with us

Policies and ethics