Skip to main content

Ecological Informatics: Current Scope and Future Directions

  • Conference paper
  • First Online:
Information Technologies in Environmental Engineering

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 2507 Accesses

Abstract

Ecological informatics emerges as a new discipline that studies principles of information processing in ecosystems as well as data analysis and synthesis for hind- and forecasting of ecosystems. It also focuses on integration and sharing of ecological data from genomic to landscape levels at different spatial scales by web-based data warehousing, GIS and remote sensing. Ecological informatics takes advantage of steadily advancing computational technology in order to better cope with extreme complexity and distinct nonlinearity of ecological data. It utilises cellular automata, neural, evolutionary and immunological computing to unravel ecological complexity as well as explain and forecast ecosystem responses to habitat and climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aoki, I. and T. Komatsu, 1997. Analysis and prediction of the fluctuation of sardine abundance using a neural network. Oceanologica Acta 20, 1, 81-88.

    Google Scholar 

  • Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D., 1997. Genetic Programming: An Introduction on the Automatic Evolution of Computer Programs and its Applications. Morgan Kaufmann.

    Google Scholar 

  • Cao, H., Recknagel, F, Welk, A. , Kim, B. and N. Takamura, 2006. Hybrid Evolutionary Algorithm for Rule Set Discovery in Time-Series Data to Forecast and Explain Algal Population Dynamics in Two Lakes Different in Morphome try and Eutrophication. In: Recknagel, F. (ed.), 2006. Ecological Informatics. 2ndEdition. Springer-Verlag Berlin, Heidelberg, New York, 330-342.

    Google Scholar 

  • Cao, H. and F. Recknagel, 2009. Hybridisation of process-based ecosystem models with evolutionary algorithms: Multi-objective optimisation of process representations and parameters of the lake simulation library SALMO-OO. In:Jorgensen, S.E., Chon, T.S. and F. Recknagel, (editors), 2009. Handbook of Ecological Modelling and Informatics, WIT Press, Southampton, Chapter 10, 169-185.

    Chapter  Google Scholar 

  • Capcarrere, M. Tettamanzi, A. Tomassini, M. and M. Sipper, 1998. Studying parallel evolutionary algorithms: The cellular Programming Case. In: Eiben et al. (editors), 1998. Parallel Problem Solving from Nature V. Springer-Verlag, New York, 573-582.

    Chapter  Google Scholar 

  • Chan, W. S., Recknagel, F., Cao, H. and H.D. Park, 2007. Elucidation and short- term forecasting of microcystin concentrations in Lake Suwa (Japan) by means of artificial neural networks and evolutionary algorithms. Water Research 41, 2247- 2255.

    Google Scholar 

  • Chen, Q. and A.F. Mynett, 2006, Modelling Algal Blooms in the Dutch Coast Waters by Integrated Numerical and Fuzzy Cellular Automata Approaches, Ecological Modelling, 199(1): 73-81

    Article  Google Scholar 

  • Chon, T.S., Park, Y.S., Moon, K.H. and E.Y. Cha, 1996. Patternizing communities by using an artificial neural network. Ecological Modelling, 90, 69-78.

    Article  Google Scholar 

  • Chon, T.S., Park, Y.S., Kwak, I.-S.. and E.Y. Cha, 2006. Non-linear approach to grouping, dynamics and organizational informatics by benthic macroinvertbrate communities in streams by artificial neural networks. In: Recknagel, F. (ed.), 2006. Ecological Informatics. 2ndEdition. Springer-Verlag Berlin, Heidelberg, New York, 187-238.

    Chapter  Google Scholar 

  • D’Angelo, D.J., Howard, L.M., Meyer, J.L., Gregory, S.V. and L.R. Ashkenas, 1995. Ecological uses of genetic algorithms: predicting fish distributions in complex physical habitats. Can.J.Fish.Aquat.Sci. 52, 1893-1908.

    Article  Google Scholar 

  • Doney, S.C., Abbott, M.R., Cullen, J.J., Karl, D.M. and L. Rothstein, 2004. From genes to ecosystems: the ocean’s new frontier. Front. Ecol. Environ., 2, 9, 457 466.

    Article  Google Scholar 

  • Eleveld, M.A., Schrimpf, W.B.H. and A.G. Siegert, 2003. User requirements and information definition for the virtual coastal and marine data warehouse. Ocean & Coastal Management 46, 487-505.

    Article  Google Scholar 

  • Fielding, A., 1999. Machine Learning Methods for Ecological Applications. Kluwer, 1-262.

    Google Scholar 

  • Foody, G., 2000. Soft mapping of coastal vegetation from remotely sensed imagery with a feed-forward neural network. In: Lek, S. and Guegan, J.F. (Eds.), Artificial Neuronal Networks: Application to Ecology and Evolution. Springer-Verlag, Berlin, 45-56.

    Google Scholar 

  • Goldberg, D.E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading, MA.

    Google Scholar 

  • Gyllström, M., Hansson, L-A., Jeppesen, E., Garcia-Criado, F., Gross, E., Irvine, K., Kairesalo, R., Kornijow, M.R., Miracle, M., Nykänen, T., Nõges, T., Romo, S., Stephen, D., Moss, B. and E. van Donk, 2005. The role of climate in shaping zooplankton communities of shallow lakes. Limnology and Oceanography 50, 2008-2021.

    Article  Google Scholar 

  • Hairston, N.G., Lampert, W., Caceres, C.E., Holtmeier, C.L., Weider, L.J., Gaedke, U., Fischer, J.M., Fox, J.A. and D.M. Post, 1999. Rapid evolution revealed by dormant egg. Nature 401, 446.

    Article  Google Scholar 

  • Henikoff, S., Henikoff, J.G. and S. Pietrovski, 1999. Blocks+: a non-redundant database of protein alignment blocks derived from multiple compilations. Bioinformatics 15, 471-479.

    Article  CAS  Google Scholar 

  • Holland, J.H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbour, MI.

    Google Scholar 

  • Hornik, K., Stinchcombe, M. and A. White, 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2 , 5, 359 – 366.

    Article  Google Scholar 

  • Hong, Y.-S. and R. Bhamidimarri, 2003. Evolutionary self-organising modeling of a municipal wastewater treatment plant. Water Research 37, 1199-1212.

    Article  CAS  Google Scholar 

  • Horrigan, N., Bobbin, J., Recknagel, F. and L. Metzling, 2005. Patterning, prediction and explanation of stream macroinvertebrate assemblages in Victoria (Australia) by means of artificial neural networks and genetic algorithms. In: Lek, S., Scardi, M., Verdonschot, P.F.M., Descy, J.-P. and Y.-S. Park (Eds.) (eds.), 2005. Modelling Community Structures in Freshwater Ecosystems. Springer-Verlag, Berlin, Heidelberg, New York, 252-260.

    Chapter  Google Scholar 

  • Hraber, P. and B.T. Milne, 1997. Community assembly in a model ecosystem. Ecological Modelling 103, 267-285.

    Article  Google Scholar 

  • Huang, W. and S. Foo, 2002. Neural network modelling of salinity variation in Apalachicola River. Water Research 36, 356-362.

    Article  CAS  Google Scholar 

  • Huong, H. Recknagel, F., Marshall, J. and S. Choy, 2001. Predictive Modelling of Macroinvertebrate Assemblages for Stream Habitat Assessments in Queensland (Australia). Ecological Modelling 146, 1-3, 195-206.

    Article  Google Scholar 

  • Jeong, K.-S., Recknagel, F. and G.-J. Joo, 2006. Prediction and elucidation of population dynamics of the blue-green algae Microcystis aeruginosa and the diatom Stephanodiscus hantzschii in the Nakdong River-Reservoir System (South Korea) by a recurrent artificial neural network. In: Recknagel, F. (ed.), 2006. Ecological Informatics. Scope, Techniques and Applications. 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York, 255-273.

    Google Scholar 

  • Jorgensen, S.E., Chon, T.S. and F. Recknagel, 2009. Handbook of Ecological Modelling and Informatics. WIT Press, Southampton, UK , 1 – 431.

    Book  Google Scholar 

  • Karul, C. and S. Soyupak, 2003. A Comparison between Neural Network Based and Multiple Regression Models for Chlorophyll-a Estimation. In: Recknagel, F. (ed.), 2003. Ecological Informatics. Understanding Ecology by Biologically-Inspired Computation. Springer Verlag-Berlin, Heidelberg, New York, 249-264.

    Google Scholar 

  • Kohonen T, 1989. Self-Organization and Associative Memory. Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Lek, S., Delacosta, M., Baran, P., Dimopoulos, I., Lauga, J. and S. Aulagnier, 1996. Application of neural networks to modeling nonlinear relationships in ecology. Ecological Modelling 90, 39-52.

    Article  Google Scholar 

  • Lek, S., Scardi, M., Verdonschot, P.F.M., Descy, J.-P. and Y.-S. Park (eds.), 2005. Modelling community structure in freshwater ecosystems. Springer, Berlin, Heidelberg, New York.

    Google Scholar 

  • Lockhardt, D. and E. Winzeler, 2000. Genomics, gene expression and DNA arrays. Nature 405, 827-836.

    Article  Google Scholar 

  • Lupas, A., Van Dyke, M. and J. Stock, 1991. Predicting coiled coils from protein sequences. Science 252, 1162-1164.

    Article  CAS  Google Scholar 

  • Lusk, J.J., Guthery, F.S. and S.J. DeMaso, 2001. Northern bobwhite (Colinus irginianus) abundance in relation to yearly weather and long-term climate patterns. Ecological Modelling 146, 3-15.

    Article  Google Scholar 

  • Michener, W.K., 2006. Meta-information concepts for ecological data management. Ecological Informatics 1, 3-7.

    Article  Google Scholar 

  • Minski, M.L. and S. Pappert, 1969. Perceptrons. MIT Cambridge.

    Google Scholar 

  • Mitchell, M., 1996. An Introduction to Genetic Algorithms. MIT Press, Cambridge, MA.

    Google Scholar 

  • Mulderij, G. Smolders, A.J.P. and E. van Donk, 2006. Allelopathic effect of the aquatic macrophyte, Stratiotes aloides, on natural phytoplankton. Freshwater Biology, 51, 554-561.

    Article  CAS  Google Scholar 

  • Overbeck , R., Fonstein, M., D’Souza, M., Pusch, G.D. and N. Maltsev, 1999. The use of gene clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA 96, 2896-2901.

    Article  Google Scholar 

  • Pineda, F.J., 1987. Generalisation of back-propagation to recurrent neural networks. Physical Review Letters, 59, 19, 2229–2232.

    Article  Google Scholar 

  • Poff, N.L., Tokar, S. and P. Johnson, 1996. Stream hydrological and ecological response to climate change assessed with an artificial neural network. Limnology and Oceanography 41, 5, 857-863.

    Article  Google Scholar 

  • Recknagel, F. (ed.), 2006. Ecological Informatics. Scope, Techniques and Applications. 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  • Recknagel, F., van Ginkel, C., Cao, H., Cetin, L. and B. Zhang, 2008. Generic limnological models on the touchstone: Testing the lake simulation library SALMO-OO and the rule-based Microcystis agent for warm-monomictic hypertrophic lakes in South Africa. Ecological Modelling 215, 144-158.

    Article  Google Scholar 

  • Recknagel, F., French, M., Harkonen, P. and K. Yabunaka, 1997. Artificial neural network approach for modelling and prediction of algal blooms. Ecological Modelling 96, 1-3, 11-28.

    Article  CAS  Google Scholar 

  • Recknagel, F. and H. Wilson, 2000. Elucidation and prediction of aquatic ecosystems by artificial neural networks. In: Lek, S. and J.F. Guegan (eds.), Artificial Neural Networks in Ecology and Evolution. Springer-Verlag, New York. 143-155.

    Google Scholar 

  • Recknagel, F, Kim, B., Takamura, N. and A. Welk, 2006. Unravelling and Forecasting Algal Population Dynamics in Two Lakes Different in Morphometry and Eutrophication by Neural and Evolutionary Computation. Ecological Informatics 1, 2, 133-151.

    Article  Google Scholar 

  • Recknagel, F. , Talib, A. and D. van der Molen, 2006. Phytoplankton community dynamics of two adjacent Dutch lakes in response to seasons and eutrophication control unravelled by non-supervised artificial neural networks. Ecological Informatics 1, 3, 277-286.

    Article  Google Scholar 

  • Reick, C.H., Grünewald, A. and B. Page, 2003. Multivariate time series prediction of marine zooplankton by artificial neural networks. In: Recknagel, F. (ed.), 2006. Ecological Informatics. Scope, Techniques and Applications. 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York, 369-383.

    Google Scholar 

  • Rummelhart, D.E., Hinton, G.E. and R.J. Williams, 1986. Learning representations by back-propagation errors. Nature 323, 533-536.

    Article  Google Scholar 

  • Scardi, M, 1996. Artificial neural networks as empirical models for estimating phytoplankton production. Mar.Ecol.Prog. Series 139, 289-299.

    Article  Google Scholar 

  • Schleiter, I.M., Obach, M., Wagner, R., Werner, H., Schmidt, H.H. and D. Borchartdt, D.1999. Modelling water quality, bioindication and population dynamics in lotic ecosystems using neural networks. In: Recknagel, F. (ed.), 2006. Ecological Informatics. Scope, Techniques and Applications. 2nd Edition. Springer-Verlag, Berlin, Heidelberg, New York, 169-186.

    Google Scholar 

  • Takamura, N., Otsuki, A., Aizaki, M. and Nojiri, Y., 1992. Phytoplankton species shift accompanied by transition from nitrogen dependence to phosphorus dependence of primary production in Lake Kasumigaura, Japan. Archive Hydrobiol. 124: 129-148.

    Google Scholar 

  • Van Donk, E., 2007. Chemical information transfer in freshwater plankton. Ecological Informatics 2, 2, 112-120.

    Article  Google Scholar 

  • Vesanto, J., Himberg, J., Alhoniemi, E. and J. Parhankangas, 2000. SOM Toolbox for Matlab 5. Helsinki University of Technology, Finland.

    Google Scholar 

  • Voss, M. et al., 2006. Infochemicals structure marine, terrestrial and freshwater food webs: Implications for ecological informatics. Ecological Informatics, 1, 23-32.

    Article  Google Scholar 

  • Walley, W.J. and V.N Fontana, 1998. Neural network predictors of average score per taxon and number of families at unpolluted river sites in Great Britain. Water Research 32, 3, 613-622.

    Article  CAS  Google Scholar 

  • Weiss, M. and C. Kulikowski, 1990. Computer systems that learn: Classification and prediction methods from statistics, neural networks, machine learning and expert systems. Morgan Kaufmann.

    Google Scholar 

  • Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S. and E.V. Koonin, 2001. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Research 11, 356-372.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Recknagel, F. (2009). Ecological Informatics: Current Scope and Future Directions. In: Athanasiadis, I.N., Rizzoli, A.E., Mitkas, P.A., Gómez, J.M. (eds) Information Technologies in Environmental Engineering. Environmental Science and Engineering(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88351-7_1

Download citation

Publish with us

Policies and ethics